To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

In mathematics, Dedekind sums are certain sums of products of a sawtooth function, and are given by a function D of three integer variables. Dedekind introduced them to express the functional equation of the Dedekind eta function. They have subsequently been much studied in number theory, and have occurred in some problems of topology. Dedekind sums have a large number of functional equations; this article lists only a small fraction of these.

Dedekind sums were introduced by Richard Dedekind in a commentary on fragment XXVIII of Bernhard Riemann's collected papers.

YouTube Encyclopedic

  • 1/3
    Views:
    25 001
    38 832
    915
  • Dedekind Cuts Part 1
  • Dedekind cuts and computational difficulties with real numbers | Famous Math Problems 19d
  • Real Numbers as Dedekind's cuts, 12 Essence of Set Theory

Transcription

Definition

Define the sawtooth function as

We then let

be defined by

the terms on the right being the Dedekind sums. For the case a = 1, one often writes

s(b, c) = D(1, b; c).

Simple formulae

Note that D is symmetric in a and b, and hence

and that, by the oddness of (( )),

D(−a, b; c) = −D(a, b; c),
D(a, b; −c) = D(a, b; c).

By the periodicity of D in its first two arguments, the third argument being the length of the period for both,

D(a, b; c) = D(a+kc, b+lc; c), for all integers k,l.

If d is a positive integer, then

D(ad, bd; cd) = dD(a, b; c),
D(ad, bd; c) = D(a, b; c), if (d, c) = 1,
D(ad, b; cd) = D(a, b; c), if (d, b) = 1.

There is a proof for the last equality making use of

Furthermore, az = 1 (mod c) implies D(a, b; c) = D(1, bz; c).

Alternative forms

If b and c are coprime, we may write s(b, c) as

where the sum extends over the c-th roots of unity other than 1, i.e. over all such that and .

If b, c > 0 are coprime, then

Reciprocity law

If b and c are coprime positive integers then

Rewriting this as

it follows that the number 6c s(b,c) is an integer.

If k = (3, c) then

and

A relation that is prominent in the theory of the Dedekind eta function is the following. Let q = 3, 5, 7 or 13 and let n = 24/(q − 1). Then given integers a, b, c, d with ad − bc = 1 (thus belonging to the modular group), with c chosen so that c = kq for some integer k > 0, define

Then nδ is an even integer.

Rademacher's generalization of the reciprocity law

Hans Rademacher found the following generalization of the reciprocity law for Dedekind sums:[1] If a, b, and c are pairwise coprime positive integers, then

Hence, the above triple sum vanishes if and only if (a, b, c) is a Markov triple, i.e. a solution of the Markov equation

References

  1. ^ Rademacher, Hans (1954). "Generalization of the reciprocity formula for Dedekind sums". Duke Mathematical Journal. 21: 391–397. doi:10.1215/s0012-7094-54-02140-7. Zbl 0057.03801.

Further reading

This page was last edited on 23 January 2024, at 18:38
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.