To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

D-value (microbiology)

From Wikipedia, the free encyclopedia

In microbiology, in the context of a sterilization procedure, the D-value or decimal reduction time (or decimal reduction dose) is the time (or dose of an antimicrobial drug) required, at a given condition (e.g. temperature) or set of conditions, to achieve a one-log reduction, that is, to kill 90% of relevant microorganisms.[1] A D-value is denoted with the capital letter "D". Thus, after an exposure time of 1 D, only 10% of the organisms originally present in a microbial colony would remain. The term originated in assessments of microbes' thermal resistance and in thermal death time analysis; however, it now has analogous uses in other microbial resistance and death rate applications, such as for ethylene oxide and radiation processing.

Details

Use of D-values is based on the assumption that the procedure in question causes the number of living microorganisms to decay exponentially. From this perspective, D-values can be understood as roughly analogous to half lives of radioactive substances, however a half life involves a reduction of 50% rather than 90%. The half life is actually roughly 30% (log102 ≈ 30.103%) of the D-value, so if D = 10 minutes, the number of living microorganisms will be halved in about 3 minutes.

Generally, each lot of a sterilization-resistant organism will have its own specific D-value. Determining a D-value requires an experiment, but only gives the D-value under the specific conditions of that experiment. D-values are unique to the conditions of the environment that the bacteria currently exists in.[2]  

In the context of thermal analysis it is typical practice to subscript the "D" with an indication of temperature. For example, given a hypothetical organism which is reduced by 90% after exposure to temperatures of 150° C for 20 minutes, the D-value would be written as D150C = 20 minutes. In the US, the temperature is usually indicated in degrees Fahrenheit; a notation like D230 should be understood to mean D230F (D110C). When describing D-value generally for any temperature, like in the heading of a table, a common abbreviation is DT (where T stands for the temperature), where specific values for T may be given elsewhere. A numeric subscript may also be used to indicate some other level of reduction than 90%; for example, D10 denotes the time required for a 10% reduction.

D-values are sometimes used to express a disinfectant's efficiency in reducing the number of microbes present in a given environment.[3]

See also

References

  1. ^ U.S. Food and Drug Administration. "Inspection Guides - Sterilizing Symbols (D, Z, F)". www.fda.gov. Retrieved 2018-09-28.
  2. ^ Channaiah, Lakshmikantha H.; Michael, Minto; Acuff, Jennifer C.; Lopez, Keyla; Phebus, Randall K.; Thippareddi, Harshavardhan; Milliken, George (2019-04-02). "Validation of a nut muffin baking process and thermal resistance characterization of a 7-serovar Salmonella inoculum in batter when introduced via flour or walnuts". International Journal of Food Microbiology. 294: 27–30. doi:10.1016/j.ijfoodmicro.2019.01.013. ISSN 0168-1605. PMID 30739832.
  3. ^ Priscila Gava Mazzola, Thereza Christina Vessoni Penna, Alzira M da S Martins (17 October 2003). "Determination of decimal reduction time (D value) of chemical agents used in hospitals for disinfection purposes". BMC Infectious Diseases. 3: 24. doi:10.1186/1471-2334-3-24. PMC 270032. PMID 14563217.{{cite journal}}: CS1 maint: multiple names: authors list (link)
This page was last edited on 3 December 2023, at 07:56
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.