To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Cyano radical
Structural formula of a minor contributor to cyano radical
Names
Preferred IUPAC name
Azanylidynemethyl
Other names
Cyanyl
Nitrile
Cyano
Isocyano
Identifiers
3D model (JSmol)
1697323
ChEBI
ChemSpider
88
  • InChI=1S/CN/c1-2 checkY
    Key: JEVCWSUVFOYBFI-UHFFFAOYSA-N checkY
  • [C]#N
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

The cyano radical (or cyanido radical) is a radical with molecular formula CN, sometimes written CN. The cyano radical was one of the first detected molecules in the interstellar medium, in 1938. Its detection and analysis was influential in astrochemistry. The discovery was confirmed with a coudé spectrograph, which was made famous and credible due to this detection. ·CN has been observed in both diffuse clouds and dense clouds.[1] Usually, CN is detected in regions with hydrogen cyanide, hydrogen isocyanide, and HCNH+, since it is involved in the creation and destruction of these species (see also Cyanogen).

Physical Properties

Bonding in the cyano radical can be described as a combination of two resonance structures: the structure with the unpaired electron on the carbon is the minor contributor, while the structure with the unpaired electron on the nitrogen (the isocyano radical) is the major contributor. The charge separation in the isocyano radical is similar to that of carbon monoxide. CN has a dipole moment of 1.45 debyes and a 2Σ+ ground electronic state. The selection rules are:

where N is the angular momentum, S is the electric spin, and I = 1 is the nuclear spin of 14N.[2]

Formation and destruction of CN

Formation

  • Dissociative recombination in diffuse clouds:[1]
    HCN+ + eCN + H
  • Photodissociation in dense clouds:[3]
    HCN + CN + H

Destruction

H+
3
+ CN → HCN + H2

Detections of CN

A spectral line of CN was detected in 1938 in the interstellar medium in the ultraviolet, and was identified in 1940 by Andrew McKellar. The coudé spectrograph and a 100-inch (2.5 m) telescope were used to observe CN's interstellar lines and ultraviolet spectra. Use of the spectrograph confirmed McKellar's findings and also made the spectrograph famous.[4][5] In 1970, CN's first rotational transition from J = 0 to J = 1 was detected In the Orion Nebula and the W51 nebula.[6] The first detection of CN in extragalactic sources were seen toward Sculptor Galaxy (NGC 253), IC 342, and M82 In 1988. These emission lines seen were from N = 1 to N = 0 and N = 2 to N = 1.[7] In 1991, the CN vibration-rotational bands were observed in a king furnace at the National Solar Observatory using a McMath Fourier-Transform spectrometer. The observed 2 to 0 lines show an extreme hyperfine structure.[6] In 1995, the rotational absorption spectrum of ·CN in the ground state was observed in the 1 THz region, and most of the lines were measured in the range of 560 to 1020 GHz. Four new rotational transitions were measured; N = 8 to N = 8, J = 15/2 to J = 17/2 and J = 17/2 to J = 19/2; N = 7 to N = 8, J = 15/2 to J = 17/2 and J = 13/2 to J = 15/2.[8]

References

  1. ^ a b Liszt, H.; Lucas, R. (2001). "Comparative chemistry of diffuse clouds: II. CN, HCN, HNC, CH3CN & N2H+". Astronomy & Astrophysics. 370 (2): 576–585. arXiv:astro-ph/0103247. Bibcode:2001A&A...370..576L. doi:10.1051/0004-6361:20010260.
  2. ^ Skatrud, David D.; De Lucia, Frank C.; Blake, Geoffrey A.; Sastry, K. V. L. N. (1983). "The millimeter and submillimeter spectrum of CN in its first four vibrational states". Journal of Molecular Spectroscopy. 99 (1): 35–46. Bibcode:1983JMoSp..99...35S. doi:10.1016/0022-2852(83)90290-4.
  3. ^ Bakker, Eric J.; Waters, L. B. F. M.; Lamers, Henry J. G. L. M.; Trams, Norman R.; Van der Wolf, Frank L. A. (1996). "Detection of C2, CN, and NaI D absorption in the AGB remnant of HD 56126". Astronomy and Astrophysics. 310: 893–907. arXiv:astro-ph/9510122. Bibcode:1996A&A...310..893B.
  4. ^ McKellar, Andrew (1940). "Evidence for the molecular origin of some hitherto unidentified interstellar lines". Publications of the Astronomical Society of the Pacific. 52 (307): 187–192. Bibcode:1940PASP...52..187M. doi:10.1086/125159.
  5. ^ Adams, Walter S. (1941). "Some results with the coudé spectrograph of the Mount Wilson Observatory". The Astrophysical Journal. 93: 11–23. Bibcode:1941ApJ....93...11A. doi:10.1086/144237.
  6. ^ a b Jefferts, K. B.; Penzias, A. A.; Wilson, R. W. (1970). "Observation of the CN radical in the Orion Nebula and W51". The Astrophysical Journal. 161 (2): L87–L89. Bibcode:1970ApJ...161L..87J. doi:10.1086/180576.
  7. ^ Henkel, C.; Mauersberger, R.; Schilke, P. (1988). "Molecules in external galaxies: The detection of CN, C2H, and HNC, and the tentative detection of HC3N". Astronomy and Astrophysics. 201: L23–L26. Bibcode:1988A&A...201L..23H.
  8. ^ Klisch, E.; Klaus, Th.; Belov, S. P.; Winnewisser, G.; Herbst, E. (1995). "Laboratory rotational spectrum of CN in the 1 THz region". Astronomy and Astrophysics. 304: L5–L8. Bibcode:1995A&A...304L...5K.
This page was last edited on 28 November 2023, at 22:48
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.