To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Cuthill–McKee algorithm

From Wikipedia, the free encyclopedia

Cuthill-McKee ordering of a matrix
RCM ordering of the same matrix

In numerical linear algebra, the Cuthill–McKee algorithm (CM), named after Elizabeth Cuthill and James McKee,[1] is an algorithm to permute a sparse matrix that has a symmetric sparsity pattern into a band matrix form with a small bandwidth. The reverse Cuthill–McKee algorithm (RCM) due to Alan George and Joseph Liu is the same algorithm but with the resulting index numbers reversed.[2] In practice this generally results in less fill-in than the CM ordering when Gaussian elimination is applied.[3]

The Cuthill McKee algorithm is a variant of the standard breadth-first search algorithm used in graph algorithms. It starts with a peripheral node and then generates levels for until all nodes are exhausted. The set is created from set by listing all vertices adjacent to all nodes in . These nodes are ordered according to predecessors and degree.

YouTube Encyclopedic

  • 1/3
    Views:
    2 159
    3 021
    4 396
  • Cuthill Mckee Algorithm by Dr. Aarthi
  • Best Linear Spline Approximation in the Univariate Case
  • Connected Components Code - Intro to Algorithms

Transcription

Algorithm

Given a symmetric matrix we visualize the matrix as the adjacency matrix of a graph. The Cuthill–McKee algorithm is then a relabeling of the vertices of the graph to reduce the bandwidth of the adjacency matrix.

The algorithm produces an ordered n-tuple of vertices which is the new order of the vertices.

First we choose a peripheral vertex (the vertex with the lowest degree) and set .

Then for we iterate the following steps while

  • Construct the adjacency set of (with the i-th component of ) and exclude the vertices we already have in
  • Sort ascending by minimum predecessor (the already-visited neighbor with the earliest position in R), and as a tiebreak ascending by vertex degree.[4]
  • Append to the Result set .

In other words, number the vertices according to a particular level structure (computed by breadth-first search) where the vertices in each level are visited in order of their predecessor's numbering from lowest to highest. Where the predecessors are the same, vertices are distinguished by degree (again ordered from lowest to highest).

See also

References

  1. ^ E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices In Proc. 24th Nat. Conf. ACM, pages 157–172, 1969.
  2. ^ "Ciprian Zavoianu - weblog: Tutorial: Bandwidth reduction - The CutHill-McKee Algorithm".
  3. ^ J. A. George and J. W-H. Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall, 1981
  4. ^ The Reverse Cuthill-McKee Algorithm in Distributed-Memory [1], slide 8, 2016
This page was last edited on 21 June 2022, at 08:27
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.