To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

# Credible interval

In Bayesian statistics, a credible interval is an interval within which an unobserved parameter value falls with a particular subjective probability. It is an interval in the domain of a posterior probability distribution or a predictive distribution.[1] The generalisation to multivariate problems is the credible region. Credible intervals are analogous to confidence intervals in frequentist statistics,[2] although they differ on a philosophical basis:[3] Bayesian intervals treat their bounds as fixed and the estimated parameter as a random variable, whereas frequentist confidence intervals treat their bounds as random variables and the parameter as a fixed value. Also, Bayesian credible intervals use (and indeed, require) knowledge of the situation-specific prior distribution, while the frequentist confidence intervals do not.

For example, in an experiment that determines the distribution of possible values of the parameter ${\displaystyle \mu }$, if the subjective probability that ${\displaystyle \mu }$ lies between 35 and 45 is 0.95, then ${\displaystyle 35\leq \mu \leq 45}$ is a 95% credible interval.

• 1/4
Views:
2 610
1 545
1 724
599
• ✪ Credible Intervals
• ✪ Explaining the difference between confidence and credible intervals
• ✪ Lecture75 (Data2Decision) Bayesian Regression, part 2
• ✪ Bayesian analysis of pedigrees

## Choosing a credible interval

Credible intervals are not unique on a posterior distribution. Methods for defining a suitable credible interval include:

• Choosing the narrowest interval, which for a unimodal distribution will involve choosing those values of highest probability density including the mode. This is sometimes called the highest posterior density interval.
• Choosing the interval where the probability of being below the interval is as likely as being above it. This interval will include the median. This is sometimes called the equal-tailed interval.
• Assuming that the mean exists, choosing the interval for which the mean is the central point.

It is possible to frame the choice of a credible interval within decision theory and, in that context, an optimal interval will always be a highest probability density set.[4]

## Contrasts with confidence interval

A frequentist 95% confidence interval means that with a large number of repeated samples, 95% of such calculated confidence intervals would include the true value of the parameter. In frequentist terms, the parameter is fixed (cannot be considered to have a distribution of possible values) and the confidence interval is random (as it depends on the random sample).

Bayesian credible intervals can be quite different from frequentist confidence intervals for two reasons:

• credible intervals incorporate problem-specific contextual information from the prior distribution whereas confidence intervals are based only on the data;
• credible intervals and confidence intervals treat nuisance parameters in radically different ways.

For the case of a single parameter and data that can be summarised in a single sufficient statistic, it can be shown that the credible interval and the confidence interval will coincide if the unknown parameter is a location parameter (i.e. the forward probability function has the form ${\displaystyle \mathrm {Pr} (x|\mu )=f(x-\mu )}$ ), with a prior that is a uniform flat distribution;[5] and also if the unknown parameter is a scale parameter (i.e. the forward probability function has the form ${\displaystyle \mathrm {Pr} (x|s)=f(x/s)}$ ), with a Jeffreys' prior   ${\displaystyle \mathrm {Pr} (s|I)\;\propto \;1/s}$ [5] — the latter following because taking the logarithm of such a scale parameter turns it into a location parameter with a uniform distribution. But these are distinctly special (albeit important) cases; in general no such equivalence can be made.

## References

1. ^ Edwards, Ward, Lindman, Harold, Savage, Leonard J. (1963) "Bayesian statistical inference in psychological research". Psychological Review, 70, 193-242
2. ^ Lee, P.M. (1997) Bayesian Statistics: An Introduction, Arnold. ISBN 0-340-67785-6
3. ^
4. ^ O'Hagan, A. (1994) Kendall's Advanced Theory of Statistics, Vol 2B, Bayesian Inference, Section 2.51. Arnold, ISBN 0-340-52922-9
5. ^ a b Jaynes, E. T. (1976). "Confidence Intervals vs Bayesian Intervals", in Foundations of Probability Theory, Statistical Inference, and Statistical Theories of Science, (W. L. Harper and C. A. Hooker, eds.), Dordrecht: D. Reidel, pp. 175 et seq