To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Cornering force

From Wikipedia, the free encyclopedia

'Deflected' tread path, sideslip velocity and slip angle
'Deflected' tread path, sideslip velocity and slip angle
Graph of cornering force vs slip angle
Graph of cornering force vs slip angle

Cornering force or side force is the lateral (i.e., parallel to wheel axis) force produced by a vehicle tire during cornering.[1]

Cornering force is generated by tire slip and is proportional to slip angle at low slip angles. The rate at which cornering force builds up is described by relaxation length. Slip angle describes the deformation of the tire contact patch, and this deflection of the contact patch deforms the tire in a fashion akin to a spring.

As with deformation of a spring, deformation of the tire contact patch generates a reaction force in the tire; the cornering force. Integrating the force generated by every tread element along the contact patch length gives the total cornering force. Although the term, "tread element" is used, the compliance in the tire that leads to this effect is actually a combination of sidewall deflection and deflection of the rubber within the contact patch. The exact ratio of sidewall compliance to tread compliance is a factor in tire construction and inflation pressure.

Because the tire deformation tends to reach a maximum behind the center of the contact patch, by a distance known as pneumatic trail, it tends to generate a torque about a vertical axis known as self aligning torque.

The diagram is misleading because the reaction force would appear to be acting in the wrong direction. It is simply a matter of convention to quote positive cornering force as acting in the opposite direction to positive tire slip so that calculations are simplified, since a vehicle cornering under the influence of a cornering force to the left will generate a tire slip to the right.

The same principles can be applied to a tire being deformed longitudinally, or in a combination of both longitudinal and lateral directions. The behaviour of a tire under combined longitudinal and lateral deformation can be described by a traction circle.

YouTube Encyclopedic

  • 1/3
    Views:
    7 896
    7 849
    277 218
  • Vehicle Dynamics Lecture #1: CG, Load Transfer, Accel, Braking, Cornering, Friction Circle
  • Mod-01 Lec-12 Lateral Force Generation
  • Cornering - Risk Rider

Transcription

See also

References

  1. ^ Pacejka, Hans B. Tire and Vehicle Dynamics (2nd ed.). Society of Automotive Engineers. ISBN 0-7680-1702-5.
This page was last edited on 6 July 2020, at 07:59
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.