To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Continuous spatial automaton

From Wikipedia, the free encyclopedia

In automata theory (a subfield of computer science), continuous spatial automata, unlike cellular automata, have a continuum of locations, while the state of a location still is any of a finite number of real numbers. Time can also be continuous, and in this case the state evolves according to differential equations.

One important example is reaction–diffusion textures, differential equations proposed by Alan Turing to explain how chemical reactions could create the stripes on zebras and spots on leopards. When these are approximated by CA, such CAs often yield similar patterns. Another important example is neural fields, which are the continuum limit of neural networks where average firing rates evolve based on integro-differential equations.[1][2] Such models demonstrate spatiotemporal pattern formation, localized states and travelling waves.[3][4] They have been used as models for cortical memory states and visual hallucinations.[5]

MacLennan [1] considers continuous spatial automata as a model of computation, and demonstrated that they can implement Turing-universality.[6]

YouTube Encyclopedic

  • 1/3
    Views:
    18 855
    9 935
    2 163
  • Introduction to Complexity: Cellular Automata as Computers
  • Introduction to Complexity: Elementary Cellular Automata Part 1
  • Self-Organizing Cellular Automata

Transcription

See also

References

  1. ^ H. R. Wilson and J. D. Cowan. "Excitatory and inhibitory interactions in localized populations of model neurons" Biophysical Journal, 12:1–24, 1972.
  2. ^ H. R. Wilson and J. D. Cowan. "A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue" Kybernetik, 13:55–80, 1973.
  3. ^ S. Amari. "Dynamics of pattern formation in lateral inhibition type neural fields" Biological Cybernetics, 27:77–87, 1977.
  4. ^ Coombes, Stephen (2006). "Neural fields". Scholarpedia. 1 (6): 1373. Bibcode:2006SchpJ...1.1373C. doi:10.4249/scholarpedia.1373.
  5. ^ G. B. Ermentrout and J. D. Cowan. "A mathematical theory of visual hallucination patterns" Biological Cybernetics, 34:137–150, 1979.
  6. ^ David H. Wolpert and Bruce J. MacLennan, "A Universal Field Computer That is Purely Linear", University of Tennessee, Knoxville, Department of Computer Science Technical Report CS-93-206, September 14, 1993, 28 pp.
This page was last edited on 13 June 2024, at 00:39
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.