To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Connection (algebraic framework)

From Wikipedia, the free encyclopedia

Geometry of quantum systems (e.g., noncommutative geometry and supergeometry) is mainly phrased in algebraic terms of modules and algebras. Connections on modules are generalization of a linear connection on a smooth vector bundle written as a Koszul connection on the -module of sections of .[1]

YouTube Encyclopedic

  • 1/3
    Views:
    3 853
    16 146
    2 670
  • Wild Linear Algebra 27: Geometry with linear algebra
  • MathHistory22: Algebraic number theory and rings I
  • Wild Linear Algebra 35: Oriented circles and relativistic geometry II

Transcription

Commutative algebra

Let be a commutative ring and an A-module. There are different equivalent definitions of a connection on .[2]

First definition

If is a ring homomorphism, a -linear connection is a -linear morphism

which satisfies the identity

A connection extends, for all to a unique map

satisfying . A connection is said to be integrable if , or equivalently, if the curvature vanishes.

Second definition

Let be the module of derivations of a ring . A connection on an A-module is defined as an A-module morphism

such that the first order differential operators on obey the Leibniz rule

Connections on a module over a commutative ring always exist.

The curvature of the connection is defined as the zero-order differential operator

on the module for all .

If is a vector bundle, there is one-to-one correspondence between linear connections on and the connections on the -module of sections of . Strictly speaking, corresponds to the covariant differential of a connection on .

Graded commutative algebra

The notion of a connection on modules over commutative rings is straightforwardly extended to modules over a graded commutative algebra.[3] This is the case of superconnections in supergeometry of graded manifolds and supervector bundles. Superconnections always exist.

Noncommutative algebra

If is a noncommutative ring, connections on left and right A-modules are defined similarly to those on modules over commutative rings.[4] However these connections need not exist.

In contrast with connections on left and right modules, there is a problem how to define a connection on an R-S-bimodule over noncommutative rings R and S. There are different definitions of such a connection.[5] Let us mention one of them. A connection on an R-S-bimodule is defined as a bimodule morphism

which obeys the Leibniz rule

See also

Notes

References

  • Koszul, Jean-Louis (1950). "Homologie et cohomologie des algèbres de Lie" (PDF). Bulletin de la Société Mathématique de France. 78: 65–127. doi:10.24033/bsmf.1410.
  • Koszul, J. L. (1986). Lectures on Fibre Bundles and Differential Geometry (Tata University, Bombay, 1960). doi:10.1007/978-3-662-02503-1. ISBN 978-3-540-12876-2. S2CID 51020097. Zbl 0244.53026.
  • Bartocci, Claudio; Bruzzo, Ugo; Hernández-Ruipérez, Daniel (1991). The Geometry of Supermanifolds. doi:10.1007/978-94-011-3504-7. ISBN 978-94-010-5550-5.
  • Dubois-Violette, Michel; Michor, Peter W. (1996). "Connections on central bimodules in noncommutative differential geometry". Journal of Geometry and Physics. 20 (2–3): 218–232. arXiv:q-alg/9503020. doi:10.1016/0393-0440(95)00057-7. S2CID 15994413.
  • Landi, Giovanni (1997). An Introduction to Noncommutative Spaces and their Geometries. Lecture Notes in Physics. Vol. 51. arXiv:hep-th/9701078. doi:10.1007/3-540-14949-X. ISBN 978-3-540-63509-3. S2CID 14986502.
  • Mangiarotti, L.; Sardanashvily, G. (2000). Connections in Classical and Quantum Field Theory. doi:10.1142/2524. ISBN 978-981-02-2013-6.

External links

  • Sardanashvily, G. (2009). "Lectures on Differential Geometry of Modules and Rings". arXiv:0910.1515 [math-ph].
This page was last edited on 18 February 2024, at 08:02
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.