Part of the Politics and Economics series 
Electoral systems 


In social choice theory, Condorcet's voting paradox is a fundamental discovery by the Marquis de Condorcet that majority rule is inherently selfcontradictory. The result implies that it is logically impossible for any voting system to guarantee a winner will have support from a majority of voters: in some situations, a majority of voters will prefer A to B, B to C, and also C to A, even if every voter's individual preferences are rational and avoid selfcontradiction. Examples of Condorcet's paradox are called Condorcet cycles or cyclic ties.
In such a cycle, every possible choice is rejected by the electorate in favor of another alternative, who is preferred by more than half of all voters. Thus, any attempt to ground social decisionmaking in majoritarianism must accept such selfcontradictions (commonly called spoiler effects). Systems that attempt to do so, while minimizing the rate of such selfcontradictions, are called Condorcet methods.
Condorcet's paradox is a special case of Arrow's paradox, which shows that any kind of social decisionmaking process is either selfcontradictory, a dictatorship, or incorporates information about the strength of different voters' preferences (e.g. cardinal utility or rated voting).
YouTube Encyclopedic

1/5Views:157 99024 0543 5592 4451 374

Voting Systems and the Condorcet Paradox  Infinite Series

Game Theory 101 (#46): Condorcet's Paradox and Social Preferences

Lab 8.3 Condorcet Paradox

Condorcet's Paradox

Condorcet's Paradox in Practice
Transcription
History
Condorcet's paradox was first discovered by Spanish philosopher and theologian Ramon Llull in the 13th century, during his investigations into church governance, but his work was lost until the 21st century. The mathematician and political philosopher Marquis de Condorcet rediscovered the paradox in the late 18th century.^{[1]}^{[2]}^{[3]}
Condorcet's discovery means he arguably identified the key result of Arrow's impossibility theorem, albeit under stronger conditions than required by Arrow: Condorcet cycles create situations where any ranked voting system that respects majorities must have a spoiler effect.
Example
Suppose we have three candidates, A, B, and C, and that there are three voters with preferences as follows:
Voter  First preference  Second preference  Third preference 

Voter 1  A  B  C 
Voter 2  B  C  A 
Voter 3  C  A  B 
If C is chosen as the winner, it can be argued that B should win instead, since two voters (1 and 2) prefer B to C and only one voter (3) prefers C to B. However, by the same argument A is preferred to B, and C is preferred to A, by a margin of two to one on each occasion. Thus the society's preferences show cycling: A is preferred over B which is preferred over C which is preferred over A.
As a result, any attempt to appeal to the principle of majority rule will lead to logical selfcontradiction. Regardless of which alternative we select, we can find another alternative that would be preferred by most voters.
Likelihood of the paradox
It is possible to estimate the probability of the paradox by extrapolating from real election data, or using mathematical models of voter behavior, though the results depend strongly on which model is used.
Impartial culture model
We can calculate the probability of seeing the paradox for the special case where voter preferences are uniformly distributed among the candidates. (This is the "impartial culture" model, which is known to be a "worstcase scenario"^{[4]}^{[5]}^{: 40 }^{[6]}^{: 320 }^{[7]}—most models show substantially lower probabilities of Condorcet cycles.)
For voters providing a preference list of three candidates A, B, C, we write (resp. , ) the random variable equal to the number of voters who placed A in front of B (respectively B in front of C, C in front of A). The sought probability is (we double because there is also the symmetric case A> C> B> A). We show that, for odd , where which makes one need to know only the joint distribution of and .
If we put , we show the relation which makes it possible to compute this distribution by recurrence: .
The following results are then obtained:
3  101  201  301  401  501  601  

5.556%  8.690%  8.732%  8.746%  8.753%  8.757%  8.760% 
The sequence seems to be tending towards a finite limit.
Using the central limit theorem, we show that tends to where is a variable following a Cauchy distribution, which gives (constant quoted in the OEIS).
The asymptotic probability of encountering the Condorcet paradox is therefore which gives the value 8.77%.^{[8]}^{[9]}
Some results for the case of more than three candidates have been calculated^{[10]} and simulated.^{[11]} The simulated likelihood for an impartial culture model with 25 voters increases with the number of candidates:^{[11]}^{: 28 }
3  4  5  7  10 

8.4%  16.6%  24.2%  35.7%  47.5% 
The likelihood of a Condorcet cycle for related models approach these values for threecandidate elections with large electorates:^{[9]}
 Impartial anonymous culture (IAC): 6.25%
 Uniform culture (UC): 6.25%
 Maximal culture condition (MC): 9.17%
All of these models are unrealistic, but can be investigated to establish an upper bound on the likelihood of a cycle.^{[9]}
Group coherence models
When modeled with more realistic voter preferences, Condorcet paradoxes in elections with a small number of candidates and a large number of voters become very rare.^{[5]}^{: 78 }
Spatial model
A study of threecandidate elections analyzed 12 different models of voter behavior, and found the spatial model of voting to be the most accurate to realworld rankedballot election data. Analyzing this spatial model, they found the likelihood of a cycle to decrease to zero as the number of voters increases, with likelihoods of 5% for 100 voters, 0.5% for 1000 voters, and 0.06% for 10,000 voters.^{[12]}
Another spatial model found likelihoods of 2% or less in all simulations of 201 voters and 5 candidates, whether two or fourdimensional, with or without correlation between dimensions, and with two different dispersions of candidates.^{[11]}^{: 31 }
Empirical studies
Many attempts have been made at finding empirical examples of the paradox.^{[13]} Empirical identification of a Condorcet paradox presupposes extensive data on the decisionmakers' preferences over all alternatives—something that is only very rarely available.
While examples of the paradox seem to occur occasionally in small settings (e.g., parliaments) very few examples have been found in larger groups (e.g. electorates), although some have been identified.^{[14]}
A summary of 37 individual studies, covering a total of 265 realworld elections, large and small, found 25 instances of a Condorcet paradox, for a total likelihood of 9.4%^{[6]}^{: 325 } (and this may be a high estimate, since cases of the paradox are more likely to be reported on than cases without).^{[5]}^{: 47 }
An analysis of 883 threecandidate elections extracted from 84 realworld rankedballot elections of the Electoral Reform Society found a Condorcet cycle likelihood of 0.7%. These derived elections had between 350 and 1,957 voters. A similar analysis of data from the 1970–2004 American National Election Studies thermometer scale surveys found a Condorcet cycle likelihood of 0.4%. These derived elections had between 759 and 2,521 "voters".^{[12]}
A database of 189 ranked United States elections from 2004 to 2022 contained only one Condorcet cycle: the 2021 Minneapolis Ward 2 city council election.^{[15]} While this indicates a very low rate of Condorcet cycles (0.5%), it's possible that some of the effect is due to general twoparty domination.
Andrew Myers, who operates the Condorcet Internet Voting Service, analyzed 10,354 nonpolitical CIVS elections and found cycles in 17% of elections with at least 10 votes, with the figure dropping to 2.1% for elections with at least 100 votes, and 1.2% for ≥300 votes.^{[16]}
Implications
When a Condorcet method is used to determine an election, the voting paradox of cyclical societal preferences implies that the election has no Condorcet winner: no candidate who can win a oneonone election against each other candidate. There will still be a smallest group of candidates, known as the Smith set, such that each candidate in the group can win a oneonone election against each of the candidates outside the group. The several variants of the Condorcet method differ on how they resolve such ambiguities when they arise to determine a winner.^{[17]} The Condorcet methods which always elect someone from the Smith set when there is no Condorcet winner are known as Smithefficient. Note that using only rankings, there is no fair and deterministic resolution to the trivial example given earlier because each candidate is in an exactly symmetrical situation.
Situations having the voting paradox can cause voting mechanisms to violate the axiom of independence of irrelevant alternatives—the choice of winner by a voting mechanism could be influenced by whether or not a losing candidate is available to be voted for.
Twostage voting processes
One important implication of the possible existence of the voting paradox in a practical situation is that in a paired voting process like those of standard parliamentary procedure, the eventual winner will depend on the way the majority votes are ordered. For example, say a popular bill is set to pass, before some other group offers an amendment; this amendment passes by majority vote. This may result in a majority of a legislature rejecting the bill as a whole, thus creating a paradox (where a popular amendment to a popular bill has made it unpopular). This logical inconsistency is the origin of the poison pill amendment, which deliberately engineers a false Condorcet cycle to kill a bill. Likewise, the order of votes in a legislature can be manipulated by the person arranging them to ensure their preferred outcome wins.
Despite frequent objections by social choice theorists about the logically incoherent results of such procedures, and the existence of better alternatives for choosing between multiple versions of a bill, the procedure of pairwise majorityrule is widelyused and is codified into the bylaws or parliamentary procedures of almost every kind of deliberative assembly.
Spoiler effects
Condorcet paradoxes imply majoritarian methods fail independence of irrelevant alternatives. Label the three candidates in a race Rock, Paper, and Scissors. In a oneonone race, Rock loses to Paper, Paper to Scissors, etc.
Without loss of generality, say that Rock wins the election with a certain method. Then, Scissors is a spoiler candidate for Paper: if Scissors were to drop out, Paper would win the only oneonone race (Paper defeats Rock). The same reasoning applies regardless of the winner.
This example also shows why Condorcet elections are rarely (if ever) spoiled: spoilers can only happen when there is no Condorcet winner. Condorcet cycles are rare in large elections,^{[18]}^{[19]} and the median voter theorem shows cycles are impossible whenever candidates are arrayed on a leftright spectrum.
See also
 Arrow's impossibility theorem
 Discursive dilemma
 Spoiler effect
 Independence of irrelevant alternatives
 Nakamura number
 Quadratic voting
 Rock paper scissors
 Smith set
References
 ^ Marquis de Condorcet (1785). Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix (PNG) (in French). Retrieved 20080310.
 ^ Condorcet, JeanAntoineNicolas de Caritat; Sommerlad, Fiona; McLean, Iain (19890101). The political theory of Condorcet. Oxford: University of Oxford, Faculty of Social Studies. pp. 69–80, 152–166. OCLC 20408445.
Clearly, if anyone's vote was selfcontradictory (having cyclic preferences), it would have to be discounted, and we should therefore establish a form of voting which makes such absurdities impossible
 ^ Gehrlein, William V. (2002). "Condorcet's paradox and the likelihood of its occurrence: different perspectives on balanced preferences*". Theory and Decision. 52 (2): 171–199. doi:10.1023/A:1015551010381. ISSN 00405833. S2CID 118143928.
Here, Condorcet notes that we have a 'contradictory system' that represents what has come to be known as Condorcet's Paradox.
 ^ Tsetlin, Ilia; Regenwetter, Michel; Grofman, Bernard (20031201). "The impartial culture maximizes the probability of majority cycles". Social Choice and Welfare. 21 (3): 387–398. doi:10.1007/s003550030269z. ISSN 01761714. S2CID 15488300.
it is widely acknowledged that the impartial culture is unrealistic ... the impartial culture is the worst case scenario
 ^ ^{a} ^{b} ^{c} Gehrlein, William V.; Lepelley, Dominique (2011). Voting paradoxes and group coherence : the condorcet efficiency of voting rules. Berlin: Springer. doi:10.1007/9783642031076. ISBN 9783642031076. OCLC 695387286.
most election results do not correspond to anything like any of DC, IC, IAC or MC ... empirical studies ... indicate that some of the most common paradoxes are relatively unlikely to be observed in actual elections. ... it is easily concluded that Condorcet's Paradox should very rarely be observed in any real elections on a small number of candidates with large electorates, as long as voters' preferences reflect any reasonable degree of group mutual coherence
 ^ ^{a} ^{b} Van Deemen, Adrian (2014). "On the empirical relevance of Condorcet's paradox". Public Choice. 158 (3–4): 311–330. doi:10.1007/s1112701301333. ISSN 00485829. S2CID 154862595.
small departures of the impartial culture assumption may lead to large changes in the probability of the paradox. It may lead to huge declines or, just the opposite, to huge increases.
 ^ May, Robert M. (1971). "Some mathematical remarks on the paradox of voting". Behavioral Science. 16 (2): 143–151. doi:10.1002/bs.3830160204. ISSN 00057940.
 ^ Guilbaud, GeorgesThéodule (2012). "Les théories de l'intérêt général et le problème logique de l'agrégation". Revue économique. 63 (4): 659. doi:10.3917/reco.634.0659. ISSN 00352764.
 ^ ^{a} ^{b} ^{c} Gehrlein, William V. (20020301). "Condorcet's paradox and the likelihood of its occurrence: different perspectives on balanced preferences*". Theory and Decision. 52 (2): 171–199. doi:10.1023/A:1015551010381. ISSN 15737187. S2CID 118143928.
to have a PMRW with probability approaching 15/16 = 0.9375 with IAC and UC, and approaching 109/120 = 0.9083 for MC. … these cases represent situations in which the probability that a PMRW exists would tend to be at a minimum … intended to give us some idea of the lower bound on the likelihood that a PMRW exists.
 ^ Gehrlein, William V. (1997). "Condorcet's paradox and the Condorcet efficiency of voting rules". Mathematica Japonica. 45: 173–199.
 ^ ^{a} ^{b} ^{c} Merrill, Samuel (1984). "A Comparison of Efficiency of Multicandidate Electoral Systems". American Journal of Political Science. 28 (1): 23–48. doi:10.2307/2110786. ISSN 00925853. JSTOR 2110786.
 ^ ^{a} ^{b} Tideman, T. Nicolaus; Plassmann, Florenz (2012), Felsenthal, Dan S.; Machover, Moshé (eds.), "Modeling the Outcomes of VoteCasting in Actual Elections", Electoral Systems, Berlin, Heidelberg: Springer Berlin Heidelberg, Table 9.6 Shares of strict pairwise majority rule winners (SPMRWs) in observed and simulated elections, doi:10.1007/9783642204418_9, ISBN 9783642204401, retrieved 20211112,
Mean number of voters: 1000 … Spatial model: 99.47% [0.5% cycle likelihood] … 716.4 [ERS data] … Observed elections: 99.32% … 1,566.7 [ANES data] … 99.56%
 ^ KurrildKlitgaard, Peter (2014). "Empirical social choice: An introduction". Public Choice. 158 (3–4): 297–310. doi:10.1007/s1112701401644. ISSN 00485829. S2CID 148982833.
 ^ KurrildKlitgaard, Peter (2001). "An empirical example of the Condorcet paradox of voting in a large electorate". Public Choice. 107: 135–145. doi:10.1023/A:1010304729545. ISSN 00485829. S2CID 152300013.
 ^ GrahamSquire, Adam; McCune, David (20230128). "An Examination of Ranked Choice Voting in the United States, 20042022". arXiv:2301.12075v2 [econ.GN].
 ^ Myers, A. C. (March 2024). The Frequency of Condorcet Winners in Real NonPolitical Elections. 61st Public Choice Society Conference. p. 5.
83.1% … 97.9% … 98.8% … Figure 2: Frequency of CWs and weak CWs with an increasing number of voters
 ^ Lippman, David (2014). "Voting Theory". Math in society. ISBN 9781479276530. OCLC 913874268.
There are many Condorcet methods, which vary primarily in how they deal with ties, which are very common when a Condorcet winner does not exist.
 ^ Gehrlein, William V. (20020301). "Condorcet's paradox and the likelihood of its occurrence: different perspectives on balanced preferences*". Theory and Decision. 52 (2): 171–199. doi:10.1023/A:1015551010381. ISSN 15737187.
 ^ Van Deemen, Adrian (20140301). "On the empirical relevance of Condorcet's paradox". Public Choice. 158 (3): 311–330. doi:10.1007/s1112701301333. ISSN 15737101.
Further reading
 Garman, M. B.; Kamien, M. I. (1968). "The paradox of voting: Probability calculations". Behavioral Science. 13 (4): 306–316. doi:10.1002/bs.3830130405. PMID 5663897.
 Niemi, R. G.; Weisberg, H. (1968). "A mathematical solution for the probability of the paradox of voting". Behavioral Science. 13 (4): 317–323. doi:10.1002/bs.3830130406. PMID 5663898.
 Niemi, R. G.; Wright, J. R. (1987). "Voting cycles and the structure of individual preferences". Social Choice and Welfare. 4 (3): 173–183. doi:10.1007/BF00433943. JSTOR 41105865. S2CID 145654171.