To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

Cobalt sulfide

From Wikipedia, the free encyclopedia

Cobalt sulfide
Sulfid kobaltnatý.PNG
RTECS number
  • GG332500
Molar mass 90.9982 g/mol
Appearance black solid (alpha)
grayish-red crystals (beta)
Density 5.45 g/cm3
Melting point 1195 °C
0.00038 g/100 mL (18 °C)
Solubility slightly soluble in acid
+225.0·10−6 cm3/mol
octahedral (beta)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☑Y verify (what is ☑Y☒N ?)
Infobox references

Cobalt sulfide is the name for chemical compounds with a formula CoxSy. Well-characterized species include minerals with the formula CoS, CoS2, Co3S4, and Co9S8. In general, the sulfides of cobalt are black, semiconducting, insoluble in water, and nonstoichiometric.[1]

Minerals and hydrometallurgy

Cobalt sulfides occur widely as minerals, comprising major sources of all cobalt compounds. Binary cobalt sulfide minerals include the cattierite (CoS2) and linnaeite (Co3S4). CoS2 (see image in table) is isostructural with iron pyrite, featuring disulfide groups, i.e. Co2+S22−. Linnaeite, also rare, adopts the spinel motif.[2] The Co9S8 compound is known as a very rare cobaltpentlandite (the Co analogue of pentlandite).[3] Mixed metal sulfide minerals include carrollite (CuCo2S4) and siegenite (Co3−xNixS4).

Cobalt sulfide minerals are converted to cobalt via roasting and extraction into aqueous acid. In some processes, the cobalt salts are further purified by precipitated when aqueous solutions of cobalt(II) ions are treated with hydrogen sulfide. Not only is this reaction useful in the purification of cobalt from its ores, but also in qualitative inorganic analysis.[1]

Applications and research

In combination with molybdenum, the sulfides of cobalt are used as catalysts for the industrial process called hydrodesulfurization, which is implemented on a large scale in refineries. Synthetic cobalt sulfides are widely investigated as electrocatalysts.[4]

Selected literature

  • Congiu, M.; Albano, L. G. S.; Decker, F.; Graeff, C. F. O. (2015-01-01). "Single precursor route to efficient cobalt sulphide counter electrodes for Dye-sensitized solar cells". Electrochimica Acta. 151: 517–524. doi:10.1016/j.electacta.2014.11.001.
  • Huo, Jinghao; Zheng, Min; Tu, Yongguang; Wu, Jihuai; Hu, Linhua; Dai, Songyuan (2015-03-20). "A high performance cobalt sulfide counter electrode for dye-sensitized solar cells". Electrochimica Acta. 159: 166–173. doi:10.1016/j.electacta.2015.01.214.
  • Congiu, M.; Albano, L. G. S.; Decker, F.; Graeff, C. F. O. (2015-01-01). "Single precursor route to efficient cobalt sulphide counter electrodes for dye sensitized solar cells". Electrochimica Acta. 151: 517–524. doi:10.1016/j.electacta.2014.11.001.
  • Congiu, Mirko; Lanuti, Alessandro; di Carlo, Aldo; Graeff, Carlos F. O. (2015-12-01). "A novel and large area suitable water-based ink for the deposition of cobalt sulfide films for solar energy conversion with iodine-free electrolytes". Solar Energy. 122: 87–96. doi:10.1016/j.solener.2015.08.032.
  • Lin, Jeng-Yu; Liao, Jen-Hung; Wei, Tzu-Chien (2011-04-01). "Honeycomb-like CoS Counter Electrodes for Transparent Dye-Sensitized Solar Cells". Electrochemical and Solid-State Letters. 14 (4): D41–D44. doi:10.1149/1.3533917. ISSN 1099-0062.
  • Lin, Jeng-Yu; Liao, Jen-Hung; Chou, Shu-Wei (2011-10-01). "Cathodic electrodeposition of highly porous cobalt sulfide counter electrodes for dye-sensitized solar cells". Electrochimica Acta. 56 (24): 8818–8826. doi:10.1016/j.electacta.2011.07.080.
  • Congiu, Mirko; Bonomo, Matteo; Marco, Maria Letizia De; Dowling, Denis P.; Di Carlo, Aldo; Dini, Danilo; Graeff, Carlos F. O. (2016-07-16). "Cobalt Sulfide as Counter Electrode in p-Type Dye-Sensitized Solar Cells". ChemistrySelect. 1 (11): 2808–2815. doi:10.1002/slct.201600297. ISSN 2365-6549.
  • Nattestad, Andrew; Ferguson, Michael; Kerr, Robert; Cheng, Yi-Bing; Bach, Udo (2008). "Dye-sensitized nickel(II)oxide photocathodes for tandem solar cell applications". Nanotechnology. 19 (29): 295304. doi:10.1088/0957-4484/19/29/295304.


  1. ^ a b John D. Donaldson, Detmar Beyersmann "Cobalt and Cobalt Compounds" in Ullmann's Encyclopedia of Industrial Chemistry 2005, Wiley-VCH, Weinheim. doi:10.1002/14356007.a07_281.pub2
  2. ^ Greenwood, Norman N.; Earnshaw, Alan (1984). Chemistry of the Elements. Oxford: Pergamon Press. ISBN 978-0-08-022057-4.
  3. ^
  4. ^ Mathew, Simon; Yella, Aswani; Gao, Peng; Humphry-Baker, Robin; Curchod, Basile F. E.; Ashari-Astani, Negar; Tavernelli, Ivano; Rothlisberger, Ursula; Nazeeruddin, Md. Khaja (2014). "Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers". Nature Chemistry. 6 (3): 242–247. doi:10.1038/nchem.1861. PMID 24557140.

This page was last edited on 11 October 2019, at 21:58
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.