To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Cloverleaf quasar

From Wikipedia, the free encyclopedia

Cloverleaf, H1413+117, QSO 1415+1129
Observation data (Epoch J2000)
Right ascension14 h 15 m 46.27 s
Declination+11°  29 ′  43.4 ″
Redshift2.56
Distance11 Gly
Apparent magnitude (V)17
Notable featuresFour-image lens, bright CO emission
Other designations
QSO J1415+1129, QSO B1413+1143, H 1413+117, Clover Leaf Quasar
See also: Quasar, List of quasars

The Cloverleaf quasar (H1413+117, QSO J1415+1129) is a bright, gravitationally lensed quasar.

YouTube Encyclopedic

  • 1/2
    Views:
    352
    369
  • Cassandra Cloverleaf- Faery Energy
  • Олег Цупко (ИКИ), "Гравитационное линзирование "

Transcription

Quasar

Molecular gas (notably CO) detected in the host galaxy associated with the quasar is the oldest molecular material known and provides evidence of large-scale star formation in the early universe. Thanks to the strong magnification provided by the foreground lens, the Cloverleaf is the brightest known source of CO emission at high redshift[1] and was also the first source at a redshift z = 2.56 to be detected with HCN[2] or HCO+ emission.[3] The 4 quasar images were originally discovered in 1984; in 1988, they were determined to be a single quasar split into four images, instead of 4 separate quasars. The X-rays from iron atoms were also enhanced relative to X-rays at lower energies. Since the amount of brightening due to gravitational lensing doesn't vary with the wavelength, this means that an additional object has magnified the X-rays. The increased magnification of the X-ray light can be explained by gravitational microlensing, an effect which has been used to search for compact stars and planets in our galaxy. Microlensing occurs when a star or a multiple star system passes in front of light from a background object. If a single star or a multiple star system in one of the foreground galaxies passed in front of the light path for the brightest image, then that image would be selectively magnified.[citation needed]

Black hole

The X-rays would be magnified much more than the visible light if they came from a region around the central supermassive black hole of the lensing galaxy that was smaller than the origin region of the visible light. The enhancement of the X-rays from iron ions would be due to this same effect. The analysis indicates that the X-rays are coming from a very small region, about the size of the Solar System, around the central black hole. The visible light is coming from a region ten or more times larger. The angular size of these regions at a distance of 11 billion light years is tens of thousands times smaller than the smallest region that can be resolved by the Hubble Space Telescope. This provides a way to test models for the flow of gas around a supermassive black hole.[citation needed]

Lensing galaxy and partial Einstein ring

Data from NICMOS and a special algorithm resolved the lensing galaxy and a partial Einstein ring. The Einstein ring represents the host galaxy of the lensed quasar.[4]

History

The Cloverleaf quasar was discovered in 1988. Data on the Cloverleaf collected by the Chandra X-ray Observatory in 2004 were compared with that gathered by optical telescopes. One of the X-ray components (A) in the Cloverleaf is brighter than the others in both optical and X-ray light but was found to be relatively brighter in X-ray than in optical light. The X-rays from iron atoms were also enhanced relative to X-rays at lower energies.[citation needed]

See also

References

  1. ^ S. Venturini; P. M. Solomon (2003). "The Molecular Disk in the Cloverleaf Quasar". Astrophysical Journal. 590 (2): 740–745. arXiv:astro-ph/0210529. Bibcode:2003ApJ...590..740V. doi:10.1086/375050. S2CID 761080.
  2. ^ P. Solomon; P. Vanden Bout; C. Carilli; M. Guelin (2003). "The Essential Signature of a Massive Starburst in a Distant Quasar". Nature. 426 (6967): 636–638. arXiv:astro-ph/0312436. Bibcode:2003Natur.426..636S. doi:10.1038/nature02149. PMID 14668856. S2CID 4414417.
  3. ^ D. A. Riechers; et al. (2006). "First Detection of HCO+ Emission at High Redshift". Astrophysical Journal Letters. 645 (1): L13–L16. arXiv:astro-ph/0605437. Bibcode:2006ApJ...645L..13R. doi:10.1086/505908. S2CID 17504751.
  4. ^ Chantry, Virginie; Magain, Pierre (August 2007). "Deconvolution of HST images of the Cloverleaf gravitational lens : detection of the lensing galaxy and a partial Einstein ring". Astronomy & Astrophysics. 470 (2): 467–473. arXiv:astro-ph/0612094. Bibcode:2007A&A...470..467C. doi:10.1051/0004-6361:20066839. ISSN 0004-6361.

Further reading

External links

This page was last edited on 19 December 2023, at 02:52
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.