To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

Quantum chromodynamics binding energy

From Wikipedia, the free encyclopedia

Quantum chromodynamics binding energy (QCD binding energy), gluon binding energy or chromodynamic binding energy is the energy binding quarks together into hadrons. It is the energy of the field of the strong force, which is mediated by gluons. Motion-energy and interaction-energy contribute most of the hadron's mass.[1]

Source of mass

Most of the mass of hadrons is actually QCD binding energy, through mass-energy equivalence. This phenomenon is related to chiral symmetry breaking. In the case of nucleonsprotons and neutrons – QCD binding energy forms about 99% of the nucleon's mass. That is if assuming that the kinetic energy of the hadron's constituents, moving at near the speed of light, which contributes greatly to the hadron mass,[1] is part of QCD binding energy. For protons, the sum of the rest masses of the three valence quarks (two up quarks and one down quark) is approximately 9.4 MeV/c2, while the proton's total mass is about 938.3 MeV/c2. For neutrons, the sum of the rest masses of the three valence quarks (two down quarks and one up quark) is approximately 11.9 MeV/c2, while the neutron's total mass is about 939.6 MeV/c2. Considering that nearly all of the atom's mass is concentrated in the nucleons, this means that about 99% of the mass of everyday matter (baryonic matter) is, in fact, chromodynamic binding energy.

Gluon energy

While gluons are massless, they still possess energy – chromodynamic binding energy. In this way, they are similar to photons, which are also massless particles carrying energy – photon energy. The amount of energy per single gluon, or "gluon energy", cannot be calculated. Unlike photon energy, which is quantifiable, described by the Planck-Einstein relation and depends on a single variable (the photon's frequency), no formula exists for the quantity of energy carried by each gluon. While the effects of a single photon can be observed, single gluons have not been observed outside of a hadron. Due to the mathematical complexity of quantum chromodynamics and the somewhat chaotic structure of hadrons,[2] which are composed of gluons, valence quarks, sea quarks and other virtual particles, it is not even measurable how many gluons exist at a given moment inside a hadron. Additionally, not all of the QCD binding energy is gluon energy, but rather, some of it comes from the kinetic energy of the hadron's constituents. Therefore, only the total QCD binding energy per hadron can be stated. However, in the future, studies into quark-gluon plasma might be able to overcome this.

See also


  1. ^ a b Strassler, Matt (15 April 2013). "Protons and Neutrons: The Massive Pandemonium in Matter". Of Particular Significance. Retrieved 30 May 2016.
  2. ^ Cho, Adrian (2 April 2010). "Mass of the Common Quark Finally Nailed Down". Science Magazine. AAAS. Retrieved 30 May 2016.
This page was last edited on 10 August 2019, at 21:23
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.