To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

# Central moment

In probability theory and statistics, a central moment is a moment of a probability distribution of a random variable about the random variable's mean; that is, it is the expected value of a specified integer power of the deviation of the random variable from the mean. The various moments form one set of values by which the properties of a probability distribution can be usefully characterized. Central moments are used in preference to ordinary moments, computed in terms of deviations from the mean instead of from zero, because the higher-order central moments relate only to the spread and shape of the distribution, rather than also to its location.

Sets of central moments can be defined for both univariate and multivariate distributions.

• 1/5
Views:
19 620
78 857
8 250
379
527
• ✪ Moments - Part 1 - Statistics
• ✪ Statistics - Moments #1 (Definition)
• ✪ Central moment about mean Part 1
• ✪ Moment about Mean in hindi | Central Moment in Hindi | Basic concept of moment
• ✪ Relation between Central Moment and Raw Moment | Central moment and moment about any value in Hindi

## Univariate moments

The nth moment about the mean (or nth central moment) of a real-valued random variable X is the quantity μn := E[(X − E[X])n], where E is the expectation operator. For a continuous univariate probability distribution with probability density function f(x), the nth moment about the mean μ is

${\displaystyle \mu _{n}=\operatorname {E} \left[(X-\operatorname {E} [X])^{n}\right]=\int _{-\infty }^{+\infty }(x-\mu )^{n}f(x)\,\mathrm {d} x.}$[1]

For random variables that have no mean, such as the Cauchy distribution, central moments are not defined.

The first few central moments have intuitive interpretations:

### Properties

The nth central moment is translation-invariant, i.e. for any random variable X and any constant c, we have

${\displaystyle \mu _{n}(X+c)=\mu _{n}(X).\,}$

For all n, the nth central moment is homogeneous of degree n:

${\displaystyle \mu _{n}(cX)=c^{n}\mu _{n}(X).\,}$

Only for n such that n equals 1, 2, or 3 do we have an additivity property for random variables X and Y that are independent:

${\displaystyle \mu _{n}(X+Y)=\mu _{n}(X)+\mu _{n}(Y)\,}$ provided n{1, 2, 3}.

A related functional that shares the translation-invariance and homogeneity properties with the nth central moment, but continues to have this additivity property even when n ≥ 4 is the nth cumulant κn(X). For n = 1, the nth cumulant is just the expected value; for n = either 2 or 3, the nth cumulant is just the nth central moment; for n ≥ 4, the nth cumulant is an nth-degree monic polynomial in the first n moments (about zero), and is also a (simpler) nth-degree polynomial in the first n central moments.

### Relation to moments about the origin

Sometimes it is convenient to convert moments about the origin to moments about the mean. The general equation for converting the nth-order moment about the origin to the moment about the mean is

${\displaystyle \mu _{n}=\operatorname {E} \left[\left(X-\operatorname {E} [X]\right)^{n}\right]=\sum _{j=0}^{n}{n \choose j}(-1)^{n-j}\mu '_{j}\mu ^{n-j},}$

where μ is the mean of the distribution, and the moment about the origin is given by

${\displaystyle \mu '_{m}=\int _{-\infty }^{+\infty }x^{m}f(x)\,dx=\operatorname {E} [X^{m}]=\sum _{j=0}^{m}{m \choose j}\mu _{j}\mu ^{m-j}.}$

For the cases n = 2, 3, 4 — which are of most interest because of the relations to variance, skewness, and kurtosis, respectively — this formula becomes (noting that ${\displaystyle \mu =\mu '_{1}}$ and ${\displaystyle \mu '_{0}=1}$):,

${\displaystyle \mu _{2}=\mu '_{2}-\mu ^{2}\,}$ which is commonly referred to as ${\displaystyle \operatorname {Var} (X)=\operatorname {E} [X^{2}]-\left(\operatorname {E} [X]\right)^{2}}$
${\displaystyle \mu _{3}=\mu '_{3}-3\mu \mu '_{2}+2\mu ^{3}\,}$
${\displaystyle \mu _{4}=\mu '_{4}-4\mu \mu '_{3}+6\mu ^{2}\mu '_{2}-3\mu ^{4}.\,}$

... and so on,[2] following Pascal's triangle, i.e.

${\displaystyle \mu _{5}=\mu '_{5}-5\mu \mu '_{4}+10\mu ^{2}\mu '_{3}-10\mu ^{3}\mu '_{2}+4\mu ^{5}.\,}$

because ${\displaystyle 5\mu ^{4}\mu '_{1}-\mu ^{5}\mu '_{0}=5\mu ^{4}\mu -\mu ^{5}=5\mu ^{5}-\mu ^{5}=4\mu ^{5}}$

The following sum is a stochastic variable having a compound distribution

${\displaystyle W=\sum _{i=1}^{M}Y_{i},}$

where the ${\displaystyle Y_{i}}$ are mutually independent random variables sharing the same common distribution and ${\displaystyle M}$ a random integer variable independent of the ${\displaystyle Y_{k}}$ with its own distribution. The moments of ${\displaystyle W}$ are obtained as [3]

${\displaystyle \operatorname {E} [W^{n}]=\sum _{i=0}^{n}\operatorname {E} \left[{M \choose i}\right]\sum _{j=0}^{i}{i \choose j}(-1)^{i-j}\operatorname {E} \left[\left(\sum _{k=1}^{j}Y_{k}\right)^{n}\right],}$

where ${\displaystyle \operatorname {E} \left[\left(\sum _{k=1}^{j}Y_{k}\right)^{n}\right]}$ is defined as zero for ${\displaystyle j=0}$.

### Symmetric distributions

In a symmetric distribution (one that is unaffected by being reflected about its mean), all odd central moments equal zero, because in the formula for the nth moment, each term involving a value of X less than the mean by a certain amount exactly cancels out the term involving a value of X greater than the mean by the same amount.

## Multivariate moments

For a continuous bivariate probability distribution with probability density function f(x,y) the (j,k) moment about the mean μ = (μXμY) is

${\displaystyle \mu _{j,k}=\operatorname {E} \left[(X-\operatorname {E} [X])^{j}(Y-\operatorname {E} [Y])^{k}\right]=\int _{-\infty }^{+\infty }\int _{-\infty }^{+\infty }(x-\mu _{X})^{j}(y-\mu _{Y})^{k}f(x,y)\,dx\,dy.}$