To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Cayley's formula

From Wikipedia, the free encyclopedia

The complete list of all trees on 2,3,4 labeled vertices: tree with 2 vertices, trees with 3 vertices and trees with 4 vertices.

In mathematics, Cayley's formula is a result in graph theory named after Arthur Cayley. It states that for every positive integer , the number of trees on labeled vertices is .

The formula equivalently counts the number of spanning trees of a complete graph with labeled vertices (sequence A000272 in the OEIS).

YouTube Encyclopedic

  • 1/3
    Views:
    54 337
    4 508
    2 168
  • Graph Theory: 40. Cayley's Formula and Prufer Seqences part 1/2
  • Graph Theory 12: Cayley's Tree Theorem
  • Cayley's Formula

Transcription

Proof

Many proofs of Cayley's tree formula are known.[1] One classical proof of the formula uses Kirchhoff's matrix tree theorem, a formula for the number of spanning trees in an arbitrary graph involving the determinant of a matrix. Prüfer sequences yield a bijective proof of Cayley's formula. Another bijective proof, by André Joyal, finds a one-to-one transformation between n-node trees with two distinguished nodes and maximal directed pseudoforests. A proof by double counting due to Jim Pitman counts in two different ways the number of different sequences of directed edges that can be added to an empty graph on n vertices to form from it a rooted tree; see Double counting (proof technique) § Counting trees.

History

The formula was first discovered by Carl Wilhelm Borchardt in 1860, and proved via a determinant.[2] In a short 1889 note, Cayley extended the formula in several directions, by taking into account the degrees of the vertices.[3] Although he referred to Borchardt's original paper, the name "Cayley's formula" became standard in the field.

Other properties

Cayley's formula immediately gives the number of labelled rooted forests on n vertices, namely (n + 1)n − 1. Each labelled rooted forest can be turned into a labelled tree with one extra vertex, by adding a vertex with label n + 1 and connecting it to all roots of the trees in the forest.

There is a close connection with rooted forests and parking functions, since the number of parking functions on n cars is also (n + 1)n − 1. A bijection between rooted forests and parking functions was given by M. P. Schützenberger in 1968.[4]

Generalizations

The following generalizes Cayley's formula to labelled forests: Let Tn,k be the number of labelled forests on n vertices with k connected components, such that vertices 1, 2, ..., k all belong to different connected components. Then Tn,k = k nnk − 1.[5]

References

  1. ^ Aigner, Martin; Ziegler, Günter M. (1998). Proofs from THE BOOK. Springer-Verlag. pp. 141–146.
  2. ^ Borchardt, C. W. (1860). "Über eine Interpolationsformel für eine Art Symmetrischer Functionen und über Deren Anwendung". Math. Abh. der Akademie der Wissenschaften zu Berlin: 1–20.
  3. ^ Cayley, A. (1889). "A theorem on trees". Quart. J. Pure Appl. Math. 23: 376–378.
  4. ^ Schützenberger, M. P. (1968). "On an enumeration problem". Journal of Combinatorial Theory. 4: 219–221. MR 0218257.
  5. ^ Takács, Lajos (March 1990). "On Cayley's formula for counting forests". Journal of Combinatorial Theory, Series A. 53 (2): 321–323. doi:10.1016/0097-3165(90)90064-4.
This page was last edited on 19 February 2024, at 04:40
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.