To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Causality conditions

From Wikipedia, the free encyclopedia

In the study of Lorentzian manifold spacetimes there exists a hierarchy of causality conditions which are important in proving mathematical theorems about the global structure of such manifolds. These conditions were collected during the late 1970s.[1]

The weaker the causality condition on a spacetime, the more unphysical the spacetime is. Spacetimes with closed timelike curves, for example, present severe interpretational difficulties. See the grandfather paradox.

It is reasonable to believe that any physical spacetime will satisfy the strongest causality condition: global hyperbolicity. For such spacetimes the equations in general relativity can be posed as an initial value problem on a Cauchy surface.

YouTube Encyclopedic

  • 1/5
    Views:
    45 234
    32 087
    875 891
    50 688
    22 622
  • Correlation vs Causation (Statistics)
  • Causality [Simply explained]
  • Correlation and causality | Statistical studies | Probability and Statistics | Khan Academy
  • Causal Inference - EXPLAINED!
  • Unit 5.1: Causal Reasoning -- Necessary and Sufficient Conditions

Transcription

The hierarchy

There is a hierarchy of causality conditions, each one of which is strictly stronger than the previous. This is sometimes called the causal ladder. The conditions, from weakest to strongest, are:

  • Non-totally vicious
  • Chronological
  • Causal
  • Distinguishing
  • Strongly causal
  • Stably causal
  • Causally continuous
  • Causally simple
  • Globally hyperbolic

Given are the definitions of these causality conditions for a Lorentzian manifold . Where two or more are given they are equivalent.

Notation:

(See causal structure for definitions of , and , .)

Non-totally vicious

  • For some points we have .

Chronological

  • There are no closed chronological (timelike) curves.
  • The chronological relation is irreflexive: for all .

Causal

  • There are no closed causal (non-spacelike) curves.
  • If both and then

Distinguishing

Past-distinguishing

  • Two points which share the same chronological past are the same point:
  • Equivalently, for any neighborhood of there exists a neighborhood such that no past-directed non-spacelike curve from intersects more than once.

Future-distinguishing

  • Two points which share the same chronological future are the same point:
  • Equivalently, for any neighborhood of there exists a neighborhood such that no future-directed non-spacelike curve from intersects more than once.

Strongly causal

  • For every neighborhood of there exists a neighborhood through which no timelike curve passes more than once.
  • For every neighborhood of there exists a neighborhood that is causally convex in (and thus in ).
  • The Alexandrov topology agrees with the manifold topology.

Stably causal

For each of the weaker causality conditions defined above, there are some manifolds satisfying the condition which can be made to violate it by arbitrarily small perturbations of the metric. A spacetime is stably causal if it cannot be made to contain closed causal curves by any perturbation smaller than some arbitrary finite magnitude. Stephen Hawking showed[2] that this is equivalent to:

  • There exists a global time function on . This is a scalar field on whose gradient is everywhere timelike and future-directed. This global time function gives us a stable way to distinguish between future and past for each point of the spacetime (and so we have no causal violations).

Globally hyperbolic

  • is strongly causal and every set (for points ) is compact.

Robert Geroch showed[3] that a spacetime is globally hyperbolic if and only if there exists a Cauchy surface for . This means that:

  • is topologically equivalent to for some Cauchy surface (Here denotes the real line).

See also

References

  1. ^ E. Minguzzi and M. Sanchez, The causal hierarchy of spacetimes in H. Baum and D. Alekseevsky (eds.), vol. Recent developments in pseudo-Riemannian geometry, ESI Lect. Math. Phys., (Eur. Math. Soc. Publ. House, Zurich, 2008), pp. 299–358, ISBN 978-3-03719-051-7, arXiv:gr-qc/0609119
  2. ^ S.W. Hawking, The existence of cosmic time functions Proc. R. Soc. Lond. (1969), A308, 433
  3. ^ R. Geroch, Domain of Dependence Archived 2013-02-24 at archive.today J. Math. Phys. (1970) 11, 437–449
This page was last edited on 4 March 2024, at 07:52
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.