To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Category of finite-dimensional Hilbert spaces

From Wikipedia, the free encyclopedia

In mathematics, the category FdHilb has all finite-dimensional Hilbert spaces for objects and the linear transformations between them as morphisms. Whereas the theory described by the normal category of Hilbert spaces, Hilb, is ordinary quantum mechanics, the corresponding theory on finite dimensional Hilbert spaces is called fdQM.[1]

YouTube Encyclopedic

  • 1/3
    Views:
    2 324
    899
    3 017
  • Finite dimensional C*-algebras by S. Sundar
  • Mod-01 Lec-21 Projection Theorem in a Hilbert Spaces (Contd.) and Approximation
  • Mod-01 Lec-22 Further Properties of Inner Product Spaces

Transcription

Properties

This category

According to a theorem of Selinger, the category of finite-dimensional Hilbert spaces is complete in the dagger compact category.[2][3] Many ideas from Hilbert spaces, such as the no-cloning theorem, hold in general for dagger compact categories. See that article for additional details.

References

  1. ^ Kapustin, Anton (2013). "Is there life beyond Quantum Mechanics?". arXiv:1303.6917 [quant-ph].
  2. ^ Selinger, P. (2012) [2008]. "Finite dimensional Hilbert spaces are complete for dagger compact closed categories". Logical Methods in Computer Science. 8 (3). arXiv:1207.6972. CiteSeerX 10.1.1.749.4436. doi:10.2168/LMCS-8(3:6)2012.
  3. ^ Hasegawa, M.; Hofmann, M.; Plotkin, G. (2008). "Finite Dimensional Vector Spaces Are Complete for Traced Symmetric Monoidal Categories". In Avron, A.; Dershowitz, N.; Rabinovich, A. (eds.). Pillars of Computer Science. Vol. 4800. Lecture Notes in Computer Science: Springer. pp. 367–385. CiteSeerX 10.1.1.443.3495. doi:10.1007/978-3-540-78127-1_20. ISBN 978-3-540-78127-1.


This page was last edited on 13 April 2024, at 18:07
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.