To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Spheres of nickel made by the Mond process

The Mond process, sometimes known as the carbonyl process, is a technique created by Ludwig Mond in 1890,[1] to extract and purify nickel. The process was used commercially before the end of the 19th century,[2] and particularly by the International Nickel Company in the Sudbury Basin.[3] This process converts nickel oxides into nickel metal with very high purity being attainable in just a single step.

YouTube Encyclopedic

  • 1/3
    Views:
    389
    8 935
    759
  • TN XI C2.4(5)
  • Understand the Froth Floatation Process
  • ALCOHOL PHENOL & ETHER

Transcription

Synopsis

This process involves the fact that carbon monoxide combines with nickel readily and reversibly to give nickel carbonyl. No other element forms a carbonyl compound under the mild conditions used in the process.[citation needed]

This process has three steps:

1. Nickel oxide reacts with syngas at 200 °C to give nickel, together with impurities including iron and cobalt.

NiO(s) + H2(g) → Ni(s) + H2O(g)

2. The impure nickel reacts with carbon monoxide at 50–60 °C to form the gas nickel carbonyl, leaving the impurities as solids.

Ni(s) + 4 CO(g) → Ni(CO)4(g)

3. The mixture of nickel carbonyl and syngas is heated to 220–250 °C, resulting in decomposition back to nickel and carbon monoxide:

Ni(CO)4(g) → Ni(s) + 4 CO(g)

Steps 2 and 3 illustrate a chemical transport reaction, exploiting the properties that (1) carbon monoxide and nickel readily combine to give a volatile complex and (2) this complex degrades back to nickel and carbon monoxide at higher temperatures. The decomposition may be engineered to produce powder, but more commonly an existing substrate is coated with nickel. For example, nickel pellets are made by dropping small, hot pellets through the carbonyl gas; this deposits a layer of nickel onto the pellets.

This process has also been used for plating nickel onto other metals, where a complex shape or sharp corners have made precise results difficult to achieve by electroplating. Although the results are good, the toxicity makes it impractical as an industrial process. Such parts are now plated by electroless nickel plating instead.

See also

References

  1. ^ Mond, L.; Langer, C.; Quincke, F. (1890). "Action of Carbon Monoxide on Nickel". Journal of the Chemical Society, Transactions. 57: 749–753. doi:10.1039/CT8905700749.
  2. ^ "The Extraction of Nickel from its Ores by the Mond Process". Nature. 59 (1516): 63–64. 1898. Bibcode:1898Natur..59...63.. doi:10.1038/059063a0.
  3. ^ Annual Report on the Mineral Production of Canada. Canada. Dominion Bureau of Statistics. 1932. p. 88.

Further reading

  • "Nickel: The Essentials". WebElements.
  • Liptrot, G. F. (1983). Modern Inorganic Chemistry (4th ed.). Unwin Hyman. p. 386.
  • Pauling, L. (1964). College Chemistry (3rd ed.). Freeman. p. 658.
  • Rawcliffe, C. T.; Rawson, D. H. (1974). Principles of Inorganic and Theoretical Chemistry (2nd ed.). Heinemann. p. 409.
  • "Nickel Chemistry". University of the West Indies (Mona).
  • Miessler, Gary L. (2014). Inorganic Chemistry (5th ed.). Pearson. p. 492
This page was last edited on 4 June 2021, at 15:43
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.