To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Capacity loss or capacity fading is a phenomenon observed in rechargeable battery usage where the amount of charge a battery can deliver at the rated voltage decreases with use.[1][2]

In 2003 it was reported the typical range of capacity loss in lithium-ion batteries after 500 charging and discharging cycles varied from 12.4% to 24.1%, giving an average capacity loss per cycle range of 0.025–0.048% per cycle.[3]

Stress factors

Capacity fading in Li-ion batteries occurs by a multitude of stress factors, including ambient temperature, discharge C-rate, and state of charge (SOC).

Capacity loss is strongly temperature-dependent, the aging rates increase with decreasing temperature below 25 °C, while above 25 °C aging is accelerated with increasing temperature.[4][5]

Capacity loss is C-rate sensitive and higher C-rates lead to a faster capacity loss on a per cycle. Chemical mechanisms of degradation in a Li-ion battery dominate capacity loss at low C-rates, whereas, mechanical degradation dominates at high C-rates.[6][7]

Graphite/LiCoO2 battery capacity degradation is reported to be affected by mean SOC as well as the change in SOC (ΔSOC) during the cycling operation. For the first 500 equivalent full cycles mean SOC is found to have a major effect on the capacity fade of cells as compared to ΔSOC. However, towards the end of the testing (600~800 equivalent cycles) ΔSOC becomes the major factor affecting the capacity loss rate of the cells.[8]

See also

References

  1. ^ Xia, Y. (1997). "Capacity Fading on Cycling of 4 V Li/LiMn2O4 Cells". Journal of the Electrochemical Society. 144 (8): 2593–2600. Bibcode:1997JElS..144.2593X. doi:10.1149/1.1837870.
  2. ^ Amatucci, G. (1996). "Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries". Solid State Ionics. 83 (1–2): 167–173. doi:10.1016/0167-2738(95)00231-6.
  3. ^ Spotnitz, R. (2003). "Simulation of capacity fade in lithium-ion batteries". Journal of Power Sources. 113 (1): 72–80. Bibcode:2003JPS...113...72S. doi:10.1016/S0378-7753(02)00490-1.
  4. ^ Waldmann, Thomas (September 2014). "Temperature dependent ageing mechanisms in Lithium-ion batteries – A Post-Mortem study". Journal of Power Sources. 262: 129–135. Bibcode:2014JPS...262..129W. doi:10.1016/j.jpowsour.2014.03.112.
  5. ^ W. Diao, Y. Xing, S. Saxena, and M. Pecht (2018). "Evaluation of Present Accelerated Temperature Testing and Modeling of Batteries". Applied Sciences. 8 (10): 1786. doi:10.3390/app8101786.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ C. Snyder (2016). "The Effects of charge/discharge Rate on Capacity Fade of Lithium Ion Batteries". Bibcode:2016PhDT.......260S. {{cite journal}}: Cite journal requires |journal= (help)
  7. ^ S. Saxena, Y. Xing, D. Kwon, and M. Pecht (2019). "Accelerated degradation model for C-rate loading of lithium-ion batteries". International Journal of Electrical Power & Energy Systems. 107: 438–445. doi:10.1016/j.ijepes.2018.12.016. S2CID 115690338.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. ^ S. Saxena, C. Hendricks, and M. Pecht (September 2016). "Cycle life testing and modeling of graphite/LiCoO2 cells under different state of charge ranges". Journal of Power Sources. 327: 394–400. Bibcode:2016JPS...327..394S. doi:10.1016/j.jpowsour.2016.07.057.{{cite journal}}: CS1 maint: multiple names: authors list (link)


This page was last edited on 1 November 2022, at 05:36
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.