To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Canonical basis

From Wikipedia, the free encyclopedia

In mathematics, a canonical basis is a basis of an algebraic structure that is canonical in a sense that depends on the precise context:

YouTube Encyclopedic

  • 1/5
    Views:
    48 116
    187 812
    336 161
    55 795
    251 063
  • Example of Jordan Canonical Form: Real 4x4 Matrix with Basis 1
  • Coordinates with respect to a basis | Linear Algebra | Khan Academy
  • Procedure to Find a Basis for a Set of Vectors
  • Examples of canonical forms
  • Transformation matrix with respect to a basis | Linear Algebra | Khan Academy

Transcription

Representation theory

The canonical basis for the irreducible representations of a quantized enveloping algebra of type and also for the plus part of that algebra was introduced by Lusztig [2] by two methods: an algebraic one (using a braid group action and PBW bases) and a topological one (using intersection cohomology). Specializing the parameter to yields a canonical basis for the irreducible representations of the corresponding simple Lie algebra, which was not known earlier. Specializing the parameter to yields something like a shadow of a basis. This shadow (but not the basis itself) for the case of irreducible representations was considered independently by Kashiwara;[3] it is sometimes called the crystal basis. The definition of the canonical basis was extended to the Kac-Moody setting by Kashiwara [4] (by an algebraic method) and by Lusztig [5] (by a topological method).

There is a general concept underlying these bases:

Consider the ring of integral Laurent polynomials with its two subrings and the automorphism defined by .

A precanonical structure on a free -module consists of

  • A standard basis of ,
  • An interval finite partial order on , that is, is finite for all ,
  • A dualization operation, that is, a bijection of order two that is -semilinear and will be denoted by as well.

If a precanonical structure is given, then one can define the submodule of .

A canonical basis of the precanonical structure is then a -basis of that satisfies:

  • and

for all .

One can show that there exists at most one canonical basis for each precanonical structure.[6] A sufficient condition for existence is that the polynomials defined by satisfy and .

A canonical basis induces an isomorphism from to .

Hecke algebras

Let be a Coxeter group. The corresponding Iwahori-Hecke algebra has the standard basis , the group is partially ordered by the Bruhat order which is interval finite and has a dualization operation defined by . This is a precanonical structure on that satisfies the sufficient condition above and the corresponding canonical basis of is the Kazhdan–Lusztig basis

with being the Kazhdan–Lusztig polynomials.

Linear algebra

If we are given an n × n matrix and wish to find a matrix in Jordan normal form, similar to , we are interested only in sets of linearly independent generalized eigenvectors. A matrix in Jordan normal form is an "almost diagonal matrix," that is, as close to diagonal as possible. A diagonal matrix is a special case of a matrix in Jordan normal form. An ordinary eigenvector is a special case of a generalized eigenvector.

Every n × n matrix possesses n linearly independent generalized eigenvectors. Generalized eigenvectors corresponding to distinct eigenvalues are linearly independent. If is an eigenvalue of of algebraic multiplicity , then will have linearly independent generalized eigenvectors corresponding to .

For any given n × n matrix , there are infinitely many ways to pick the n linearly independent generalized eigenvectors. If they are chosen in a particularly judicious manner, we can use these vectors to show that is similar to a matrix in Jordan normal form. In particular,

Definition: A set of n linearly independent generalized eigenvectors is a canonical basis if it is composed entirely of Jordan chains.

Thus, once we have determined that a generalized eigenvector of rank m is in a canonical basis, it follows that the m − 1 vectors that are in the Jordan chain generated by are also in the canonical basis.[7]

Computation

Let be an eigenvalue of of algebraic multiplicity . First, find the ranks (matrix ranks) of the matrices . The integer is determined to be the first integer for which has rank (n being the number of rows or columns of , that is, is n × n).

Now define

The variable designates the number of linearly independent generalized eigenvectors of rank k (generalized eigenvector rank; see generalized eigenvector) corresponding to the eigenvalue that will appear in a canonical basis for . Note that

Once we have determined the number of generalized eigenvectors of each rank that a canonical basis has, we can obtain the vectors explicitly (see generalized eigenvector).[8]

Example

This example illustrates a canonical basis with two Jordan chains. Unfortunately, it is a little difficult to construct an interesting example of low order.[9] The matrix

has eigenvalues and with algebraic multiplicities and , but geometric multiplicities and .

For we have

has rank 5,
has rank 4,
has rank 3,
has rank 2.

Therefore

Thus, a canonical basis for will have, corresponding to one generalized eigenvector each of ranks 4, 3, 2 and 1.

For we have

has rank 5,
has rank 4.

Therefore

Thus, a canonical basis for will have, corresponding to one generalized eigenvector each of ranks 2 and 1.

A canonical basis for is

is the ordinary eigenvector associated with . and are generalized eigenvectors associated with . is the ordinary eigenvector associated with . is a generalized eigenvector associated with .

A matrix in Jordan normal form, similar to is obtained as follows:

where the matrix is a generalized modal matrix for and .[10]

See also

Notes

References

  • Bronson, Richard (1970), Matrix Methods: An Introduction, New York: Academic Press, LCCN 70097490
  • Deng, Bangming; Ju, Jie; Parshall, Brian; Wang, Jianpan (2008), Finite Dimensional Algebras and Quantum Groups, Mathematical surveys and monographs, vol. 150, Providence, R.I.: American Mathematical Society, ISBN 9780821875315
  • Kashiwara, Masaki (1990), "Crystalizing the q-analogue of universal enveloping algebras", Communications in Mathematical Physics, 133 (2): 249–260, Bibcode:1990CMaPh.133..249K, doi:10.1007/bf02097367, ISSN 0010-3616, MR 1090425, S2CID 121695684
  • Kashiwara, Masaki (1991), "On crystal bases of the q-analogue of universal enveloping algebras", Duke Mathematical Journal, 63 (2): 465–516, doi:10.1215/S0012-7094-91-06321-0, ISSN 0012-7094, MR 1115118
  • Lusztig, George (1990), "Canonical bases arising from quantized enveloping algebras", Journal of the American Mathematical Society, 3 (2): 447–498, doi:10.2307/1990961, ISSN 0894-0347, JSTOR 1990961, MR 1035415
  • Lusztig, George (1991), "Quivers, perverse sheaves and quantized enveloping algebras", Journal of the American Mathematical Society, 4 (2): 365–421, doi:10.2307/2939279, ISSN 0894-0347, JSTOR 2939279, MR 1088333
  • Lusztig, George (1993), Introduction to quantum groups, Boston, MA: Birkhauser Boston, ISBN 0-8176-3712-5, MR 1227098
  • Nering, Evar D. (1970), Linear Algebra and Matrix Theory (2nd ed.), New York: Wiley, LCCN 76091646
This page was last edited on 24 March 2024, at 03:00
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.