To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Canfield ocean

From Wikipedia, the free encyclopedia

Diagram of the mechanisms hypothesized to have formed euxinic conditions in the deep ocean during the Boring Billion

The Canfield Ocean model was proposed by geochemist Donald Canfield to explain the composition of the ocean in the middle to late Proterozoic.

YouTube Encyclopedic

  • 1/3
    Views:
    3 685 153
    9 673 120
    2 241
  • What Was The "Boring Billion" Really Like?
  • History of the Earth
  • Mineralogical Co-Evolution of the Geo- and Biospheres

Transcription

History

In a paper published in 1998 in Nature,[1] Canfield argued that the deep ocean was anoxic and sulfidic (also known as euxinic) during the time of the Boring Billion (1.8–0.8 billion years ago (Gya)), and that those conditions ceased the mineral deposition of iron-rich banded iron formations (BIF) in ocean sediments. Prior to the Canfield Ocean theory, it was believed that the ocean becoming fully oxygenated during the Great Oxidation Event (GOE; ~2.46 Gya) was the mechanism that ceased BIF deposition.[2]

Formation

By the end of the GOE, oxygen levels in the atmosphere were as high as 10% of present-day levels.[3] Under these conditions, the deep ocean would have likely remained anoxic. However, the atmosphere had enough oxygen to facilitate weathering of sulfate-containing terrestrial minerals, delivering sulfate (SO42-) to the ocean through runoff.[4] Sulfate was then reduced by microorganisms to produce hydrogen sulfide (H2S):

By 1.8 Gya, sulfide (S2-) concentrations were high enough to precipitate iron out of the deep ocean by binding with iron to form pyrite (FeS2), effectively ending the formation of BIFs.[1]

Evidence

Most evidence for euxinic ocean conditions comes from stable isotope ratios found in sediment records. For example, δ34S, or the measurement of 34S and 32S concentrations compared to a standard, were found to be around 40 during the Boring Billion.[4] A δ34S value higher than 45‰ would be evidence of a fully oxygenated ocean, while a δ34S value lower than 5‰ would imply an anoxic atmosphere.[4]

In the paper, Canfield also used a box model to explain how intermediate oceans, or oceans that are only partially oxidized, would have formed.[1] The model shows that, assuming nutrient levels were anywhere near present-day levels, atmospheric oxygen levels would have needed to be much higher at the end of the GOE in order to fully oxygenate the ocean.

Scientific dispute

There is some dispute about the stability of large-scale euxinia.[5] Euxinic conditions would result in the depletion of metals essential for life, like molybdenum and copper. This would prevent the high rates of primary production that are required for euxinic oceans to form in the first place.[5] Indeed, evidence from shale records found that molybdenum concentrations in the ocean were less than 1/5th of today's ocean.[6]

See also

References

  1. ^ a b c Canfield, D. E. (1998). "A new model for Proterozoic ocean chemistry". Nature. 396 (6710): 450–453. Bibcode:1998Natur.396..450C. doi:10.1038/24839. S2CID 4414140.
  2. ^ Cloud, P. (1972-06-01). "A working model of the primitive Earth". American Journal of Science. 272 (6): 537–548. doi:10.2475/ajs.272.6.537. ISSN 0002-9599.
  3. ^ Ossa Ossa, Frantz; Spangenberg, Jorge E.; Bekker, Andrey; König, Stephan; Stüeken, Eva E.; Hofmann, Axel; Poulton, Simon W.; Yierpan, Aierken; Varas-Reus, Maria I.; Eickmann, Benjamin; Andersen, Morten B.; Schoenberg, Ronny (2022). "Moderate levels of oxygenation during the late stage of Earth's Great Oxidation Event". Earth and Planetary Science Letters. 594: 117716. doi:10.1016/j.epsl.2022.117716. hdl:10481/78482. S2CID 251150500.
  4. ^ a b c Anbar, A. D.; Knoll, A. H. (2002-08-16). "Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge?". Science. 297 (5584): 1137–1142. doi:10.1126/science.1069651. ISSN 0036-8075. PMID 12183619. S2CID 5578019.
  5. ^ a b Kendall, Brian; Anbar, Ariel D.; Kappler, Andreas; Konhauser, Kurt O. (2012-04-20), Knoll, Andrew H.; Canfield, Donald E.; Konhauser, Kurt O. (eds.), "The Global Iron Cycle", Fundamentals of Geobiology (1 ed.), Wiley, pp. 65–92, doi:10.1002/9781118280874.ch6, ISBN 978-1-118-28081-2, retrieved 2023-04-16
  6. ^ Scott, C.; Lyons, T. W.; Bekker, A.; Shen, Y.; Poulton, S. W.; Chu, X.; Anbar, A. D. (2008). "Tracing the stepwise oxygenation of the Proterozoic ocean". Nature. 452 (7186): 456–459. doi:10.1038/nature06811. ISSN 1476-4687. PMID 18368114. S2CID 205212619.
This page was last edited on 14 January 2024, at 03:35
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.