To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Burning Ship fractal

From Wikipedia, the free encyclopedia

High-quality image of the large ship in the left antenna
Full fractal.
High-quality overview image of the Burning Ship fractal
Chain of burning ships.
Our ship is on fire.

The Burning Ship fractal, first described and created by Michael Michelitsch and Otto E. Rössler in 1992, is generated by iterating the function:

in the complex plane which will either escape or remain bounded. The difference between this calculation and that for the Mandelbrot set is that the real and imaginary components are set to their respective absolute values before squaring at each iteration. The mapping is non-analytic because its real and imaginary parts do not obey the Cauchy–Riemann equations.[1] Note that virtually all images of the Burning Ship fractal are reflected across the -axis for aesthetic purposes, and some are also reflected across the -axis.[2]

YouTube Encyclopedic

  • 1/5
    Views:
    79 727
    15 620
    2 405
    41 319
    998
  • The Burning Ship - A Fractal Zoom (5e598) (4k 60fps)
  • The Towers - Burning Ship Fractal Zoom
  • 4K Burning Ship Fractals
  • Inside the Burning Ship
  • Mandelbrot vs. Tricorn vs. Burning Ship #shorts

Transcription

Implementation

Animation of a continuous zoom-out to show the amount of detail for an implementation with 64 maximum iterations

The below pseudocode implementation hardcodes the complex operations for Z. Consider implementing complex number operations to allow for more dynamic and reusable code.

for each pixel (x, y) on the screen, do:
    x := scaled x coordinate of pixel (scaled to lie in the Mandelbrot X scale (-2.5, 1))
    y := scaled y coordinate of pixel (scaled to lie in the Mandelbrot Y scale (-1, 1))

    zx := x // zx represents the real part of z
    zy := y // zy represents the imaginary part of z 

    iteration := 0
    max_iteration := 100
    while (zx*zx + zy*zy < 4 and iteration < max_iteration) do
        xtemp := zx*zx - zy*zy + x 
        zy := abs(2*zx*zy) + y // abs returns the absolute value
        zx := xtemp
        iteration := iteration + 1

    if iteration = max_iteration then // Belongs to the set
        return insideColor

    return (max_iteration / iteration) × color

References

  1. ^ Michael Michelitsch and Otto E. Rössler (1992). "The "Burning Ship" and Its Quasi-Julia Sets". In: Computers & Graphics Vol. 16, No. 4, pp. 435–438, 1992. Reprinted in Clifford A. Pickover Ed. (1998). Chaos and Fractals: A Computer Graphical Journey — A 10 Year Compilation of Advanced Research. Amsterdam, Netherlands: Elsevier. ISBN 0-444-50002-2
  2. ^ "HPDZ.NET - Still Images - Burning Ship".

External links

This page was last edited on 29 March 2024, at 05:23
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.