To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Brownian surface

From Wikipedia, the free encyclopedia

A single realisation of three-dimensional Brownian surface

A Brownian surface is a fractal surface generated via a fractal elevation function.[1][2][3]

The Brownian surface is named after Brownian motion.

Example

For instance, in the three-dimensional case, where two variables X and Y are given as coordinates, the elevation function between any two points (x1y1) and (x2y2) can be set to have a mean or expected value that increases as the vector distance between (x1y1) and (x2y2).[1] There are, however, many ways of defining the elevation function. For instance, the fractional Brownian motion variable may be used, or various rotation functions may be used to achieve more natural looking surfaces.[2]

Generation of fractional Brownian surfaces

Efficient generation of fractional Brownian surfaces poses significant challenges.[4] Since the Brownian surface represents a Gaussian process with a nonstationary covariance function, one can use the Cholesky decomposition method. A more efficient method is Stein's method,[5] which generates an auxiliary stationary Gaussian process using the circulant embedding approach and then adjusts this auxiliary process to obtain the desired nonstationary Gaussian process. The figure below shows three typical realizations of fractional Brownian surfaces for different values of the roughness or Hurst parameter. The Hurst parameter is always between zero and one, with values closer to one corresponding to smoother surfaces. These surfaces were generated using a Matlab implementation of Stein's method.

Fractional Brownian surfaces for different values of the Hurst parameter. The larger the parameter, the smoother the surface.

See also

References

  1. ^ a b Russ, John C. (1994). Fractal surfaces, Volume 1. p. 167. ISBN 0-306-44702-9.
  2. ^ a b Xie, Heping (1993). Fractals in rock mechanics. p. 73. ISBN 90-5410-133-4.
  3. ^ Vicsek, Tamás (1992). Fractal growth phenomena. p. 40. ISBN 981-02-0668-2.
  4. ^ Kroese, D.P.; Botev, Z.I. (2015). "Spatial Process Generation". Lectures on Stochastic Geometry, Spatial Statistics and Random Fields, Volume II: Analysis, Modeling and Simulation of Complex Structures, Springer-Verlag, Berlin: 369–404. arXiv:1308.0399. Bibcode:2013arXiv1308.0399K. doi:10.1007/978-3-319-10064-7_12.
  5. ^ Stein, M. L. (2002). "Fast and exact simulation of fractional Brownian motion". Journal of Computational and Graphical Statistics. 11 (3): 587–599. doi:10.1198/106186002466. S2CID 121718378.
This page was last edited on 9 February 2023, at 16:50
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.