To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

British Rail Class 70 (electric)

From Wikipedia, the free encyclopedia

Southern Railway Class CC Electrics
British Rail Class 70
20002 at the Eastleigh Works Open Day in August 1964
Type and origin
Power typeElectric
Builder
Build date1941, 1945, 1948
Total produced3
Specifications
Configuration:
 • UICCo′Co′
 • CommonwealthCo-Co
Gauge4 ft 8+12 in (1,435 mm) standard gauge
Wheel diameter3 ft 6 in (1,067 mm)
Loco weight
  • 20001/2: 99.70 long tons (101 t; 112 short tons)
  • 20003: 104.70 long tons (106 t; 117 short tons)
Electric system/s660–750 V DC Third rail (mainline)
Catenary (sidings)
Current pickup(s)Contact shoe (mainline), Pantograph (sidings)
Traction motorsEnglish Electric 245, 6 off
Train brakesVacuum, Air, Electro-Pneumatic
Performance figures
Maximum speed75 mph (121 km/h)
Power output1,470 hp (1,100 kW)
Tractive effort
  • 20001/2: 40,000 lbf (178 kN)
  • 20003: 45,000 lbf (200 kN)
Career
Operators
Class
  • SR: CC
  • BR: 70
Power classBR: 7P5F
Numbers
  • SR: CC1, CC2
  • BR: 20001–20003
Withdrawn1968
DispositionAll scrapped in 1969

The British Rail Class 70 was a class of three third rail Co-Co electric locomotives. The initial two were built by the Southern Railway (SR) at Ashford Works in 1940–41 and 1945 and were numbered CC1 and CC2[1] - the Southern Railway latterly preferring French practice for locomotive numbers which also gave an indication of the wheel arrangement. Electrical equipment was designed by Alfred Raworth[1] and the body and bogies by Oliver Bulleid. CC2 was modified slightly from the original design by C. M. Cock who had succeeded Raworth as electrical engineer. The third was built by British Railways in 1948 and numbered 20003.

YouTube Encyclopedic

  • 1/3
    Views:
    27 099
    4 647 791
    19 178
  • Electric locomotive British Rail Class 92 DB Shenker in Timisoara North Railway station
  • This Train Made Passengers Sick: The APT Tilting Train Story
  • GE class 70 - SELF TEST

Transcription

Southern Railway nos. CC1 and CC2

Externally, it was clear that the cab design was greatly influenced by the SR's experience with the 2HAL electric multiple unit (EMU) design. It has even been suggested that this was because the jigs for the welded cabs already existed and thus made for speedy and cheap construction.[citation needed] At the outbreak of war in 1939, most construction projects were put on hold in favour of the war effort. Construction of CC1 and CC2 was exempted from this, because of promised savings in labour and fuel over steam locomotives. Construction was not smooth, however, and was brought to a halt several times, due to shortage of resources.[citation needed] After nationalisation in 1948, British Railways renumbered them 20001 and 20002 respectively.

British Railways no. 20003

The third member of the class, 20003 from new, was built at Eastleigh.[2] S. B. Warder (later to become chief electrical engineer of the British Transport Commission and architect of the UK 25 kV AC overhead system still in use today) was, by then, Southern Railway's electrical engineer and he modified the design somewhat. Although counted as the same class, 20003 was markedly different externally from its two earlier sisters, being 2 inches (5 cm) longer with flat 4SUB-like cab ends, arguably a simpler (and therefore cheaper) design than the earlier two. Equipment changes, though, added 5 tons to the earlier 100-ton design.

Head codes

CC1 and CC2 locomotives were equipped with stencil head codes, but as it quickly became apparent that suitable head codes for freight workings did not exist (nor did the combination of two numbers only at that time, provide the scope) CC1 and CC2 were also fitted with six steam locomotive style discs at each end with 20003 being fitted from new so that standard codes could be displayed. With standardisation came a whole set of new two-character codes with letters as well, and all three locomotives were fitted with roller-blind two-character head codes and the discs removed.[1][3]

Technical details

The class soon proved their worth. The six traction motors providing 1,470 hp (1,100 kW) allowed them to handle 1,000-long-ton (1,000 t; 1,100-short-ton) freight and 750-long-ton (760 t; 840-short-ton) passenger trains with ease.

Booster control

Being much shorter than the predominant multiple units, electric locomotives can suffer from a problem known as "gapping" - becoming marooned between supplies at breaks in the electrical supply and snatching at the couplings whilst moving as they come on and off the power. The latter places undue stress on couplings and has been known to cause separations of a train. Raworth overcame this by having a motor–generator set (booster) with a large flywheel on the shaft between the two.[2] The traction current, instead of feeding the traction motors directly through the control assembly, powered a large motor which turned a shaft with the flywheel and fed into the generator. The output of the generator could be combined with the third rail power to reduce or boost the voltage applied to the traction motors. With the generator output polarity reversed, the control assembly could deliver around 1200 V DC by combining the generator output with the 650 V from the third rail to give positive 650 V and negative 500-600 V - leading to the nickname "boosters". The flywheel ensured the generator continued to turn whilst no current was available from the third rail, thus ensuring a continuous supply to the traction motors.

Even while stationary, Class 70 locomotives produced a noticeable droning noise due to the booster-set turning inside the body. Two booster sets were fitted in each locomotive, one for each bogie. It was not sufficient to allow the locomotives to work "off the grid" as the load on the generator whilst under power meant it would quickly consume the stored kinetic energy. They needed attentive driving, to ensure they were not brought to a halt on a gap and the booster set allowed to run down.

There were losses incurred in the conversion of electrical energy to kinetic and back again, but Raworth mitigated this in the control mechanism. Instead of having large, heavily built resistances in the power lines for the motors, the 26 taps on the controller changed resistances in the field coils of the generator. These correspondingly made the construction much lighter and more easily maintained. Instead of "burning-up" unrequired power, the controller simply altered how much power was generated.

Other features

A cross-arm pantograph[1] was fitted to each of the three locomotives to allow them to work from overhead lines erected in some yards, (notably Hither Green marshalling yard, South East London) where it was deemed too dangerous to have third rail, with staff constantly at track level, particularly in war-time blackout. The pantograph was recessed into a cut-out on the roof when not in use, to keep within the loading gauge.

The locomotives were fitted with electrically powered train heating boilers to generate steam for train heating allowing them to pull passenger trains if necessary.

Successor and withdrawal

The class formed a "proof-of-concept" for booster-based electric locomotives. Although thought of as prototypes for the later Class 71, which used the same concept, the latter differed greatly in its design and construction, being based on Swiss practice.

All three were withdrawn between October 1968 and January 1969[2] without receiving TOPS numbers, although 20001 received BR "Rail Blue" for its final years. None were preserved.

Parts of the electrical equipment including booster generators and flywheels were salvaged and used by GEC as load simulators in its test facilities at Preston, where locomotive traction equipment was dynamically tested. Among others, traction systems for the second series of trains for the Docklands Light Railway were tested on the rig.

References

Sources

  • Marsden, Colin J.; Fenn, Graham B. (2001). British Rail Main Line Electric Locomotives (2nd ed.). Oxford Publishing Co. ISBN 9780860935599. OCLC 48532553.
  • Tayler, Arthur (2007). The Southern Way: Bumper preview issue. Southampton, England: Noodle Books. ISBN 9780955411021.

Further reading

  • "The Southern's 'booster' locos". Rail Enthusiast. EMAP. January 1984. ISSN 0262-561X.

External links

This page was last edited on 6 March 2024, at 08:45
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.