To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Bridgeland stability condition

From Wikipedia, the free encyclopedia

In mathematics, and especially algebraic geometry, a Bridgeland stability condition, defined by Tom Bridgeland, is an algebro-geometric stability condition defined on elements of a triangulated category. The case of original interest and particular importance is when this triangulated category is the derived category of coherent sheaves on a Calabi–Yau manifold, and this situation has fundamental links to string theory and the study of D-branes.

Such stability conditions were introduced in a rudimentary form by Michael Douglas called -stability and used to study BPS B-branes in string theory.[1] This concept was made precise by Bridgeland, who phrased these stability conditions categorically, and initiated their study mathematically.[2]

Definition

The definitions in this section are presented as in the original paper of Bridgeland, for arbitrary triangulated categories.[2] Let be a triangulated category.

Slicing of triangulated categories

A slicing of is a collection of full additive subcategories for each such that

  • for all , where is the shift functor on the triangulated category,
  • if and and , then , and
  • for every object there exists a finite sequence of real numbers and a collection of triangles
with for all .

The last property should be viewed as axiomatically imposing the existence of Harder–Narasimhan filtrations on elements of the category .

Stability conditions

A Bridgeland stability condition on a triangulated category is a pair consisting of a slicing and a group homomorphism , where is the Grothendieck group of , called a central charge, satisfying

  • if then for some strictly positive real number .

It is convention to assume the category is essentially small, so that the collection of all stability conditions on forms a set . In good circumstances, for example when is the derived category of coherent sheaves on a complex manifold , this set actually has the structure of a complex manifold itself.

Technical remarks about stability condition

It is shown by Bridgeland that the data of a Bridgeland stability condition is equivalent to specifying a bounded t-structure on the category and a central charge on the heart of this t-structure which satisfies the Harder–Narasimhan property above.[2]

An element is semi-stable (resp. stable) with respect to the stability condition if for every surjection for , we have where and similarly for .

Examples

From the Harder–Narasimhan filtration

Recall the Harder–Narasimhan filtration for a smooth projective curve implies for any coherent sheaf there is a filtration

such that the factors have slope . We can extend this filtration to a bounded complex of sheaves by considering the filtration on the cohomology sheaves and defining the slope of , giving a function

for the central charge.

Elliptic curves

There is an analysis by Bridgeland for the case of Elliptic curves. He finds[2][3] there is an equivalence

where is the set of stability conditions and is the set of autoequivalences of the derived category .

References

  1. ^ Douglas, M.R., Fiol, B. and Römelsberger, C., 2005. Stability and BPS branes. Journal of High Energy Physics, 2005(09), p. 006.
  2. ^ a b c d Bridgeland, Tom (2006-02-08). "Stability conditions on triangulated categories". arXiv:math/0212237.
  3. ^ Uehara, Hokuto (2015-11-18). "Autoequivalences of derived categories of elliptic surfaces with non-zero Kodaira dimension". pp. 10–12. arXiv:1501.06657 [math.AG].

Papers

This page was last edited on 24 August 2023, at 23:15
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.