To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Bretherton equation

From Wikipedia, the free encyclopedia

In mathematics, the Bretherton equation is a nonlinear partial differential equation introduced by Francis Bretherton in 1964:[1]

with integer and While and denote partial derivatives of the scalar field

The original equation studied by Bretherton has quadratic nonlinearity, Nayfeh treats the case with two different methods: Whitham's averaged Lagrangian method and the method of multiple scales.[2]

The Bretherton equation is a model equation for studying weakly-nonlinear wave dispersion. It has been used to study the interaction of harmonics by nonlinear resonance.[3][4] Bretherton obtained analytic solutions in terms of Jacobi elliptic functions.[1][5]

Variational formulations

The Bretherton equation derives from the Lagrangian density:[6]

through the Euler–Lagrange equation:

The equation can also be formulated as a Hamiltonian system:[7]

in terms of functional derivatives involving the Hamiltonian

  and  

with the Hamiltonian density – consequently The Hamiltonian is the total energy of the system, and is conserved over time.[7][8]

Notes

  1. ^ a b Bretherton (1964)
  2. ^ Nayfeh (2004, §§5.8, 6.2.9 & 6.4.8)
  3. ^ Drazin & Reid (2004, pp. 393–397)
  4. ^ Hammack, J.L.; Henderson, D.M. (1993), "Resonant interactions among surface water waves", Annual Review of Fluid Mechanics, 25: 55–97, Bibcode:1993AnRFM..25...55H, doi:10.1146/annurev.fl.25.010193.000415
  5. ^ Kudryashov (1991)
  6. ^ Nayfeh (2004, §5.8)
  7. ^ a b Levandosky, S.P. (1998), "Decay estimates for fourth order wave equations", Journal of Differential Equations, 143 (2): 360–413, Bibcode:1998JDE...143..360L, doi:10.1006/jdeq.1997.3369
  8. ^ Esfahani, A. (2011), "Traveling wave solutions for generalized Bretherton equation", Communications in Theoretical Physics, 55 (3): 381–386, Bibcode:2011CoTPh..55..381A, doi:10.1088/0253-6102/55/3/01, S2CID 250783550

References

This page was last edited on 24 April 2024, at 01:15
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.