To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Bosons form one of the two fundamental classes of subatomic particle, the other being fermions. All subatomic particles must be one or the other. A composite particle (hadron) may fall into either class depending on its composition

In particle physics, a boson (/ˈbzɒn/[1] /ˈbsɒn/[2]) is a subatomic particle whose spin quantum number has an integer value (0, 1, 2, ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have odd half-integer spin (12, 32, 52, ...). Every observed subatomic particle is either a boson or a fermion.

Some bosons are elementary particles occupying a special role in particle physics, distinct from the role of fermions (which are sometimes described as the constituents of "ordinary matter"). Certain elementary bosons (e.g. gluons) act as force carriers, which give rise to forces between other particles, while one (the Higgs boson) contributes to the phenomenon of mass. Other bosons, such as mesons, are composite particles made up of smaller constituents.

Outside the realm of particle physics, multiple identical composite bosons (in this context sometimes known as 'bose particles') behave at high densities or low temperatures in a characteristic manner described by Bose–Einstein statistics: for example a gas of helium-4 atoms becomes a superfluid at temperatures close to absolute zero. Similarly, superconductivity arises because some quasiparticles, such as Cooper pairs, behave in the same way.

YouTube Encyclopedic

  • 1/5
    Views:
    2 176 308
    272 505
    786 000
    31 303
    1 399 362
  • The basics of the Higgs boson - Dave Barney and Steve Goldfarb
  • Fermions and Bosons
  • What Is the Higgs Boson? | Sean Carroll Discusses the God Particle
  • Higgs Boson ⚛️ Simplified by Neil deGrasse Tyson #shorts #science #quantum #physics
  • How the Higgs Mechanism Give Things Mass

Transcription

So two guys walk into a bar. Really? No, seriously. Two guys walk into a bar, an ice cream bar: Dave, a physicist working on the Large Hadron Collider at CERN, the European laboratory for particle physics, and Steve, a blues singer. "Dave, how's it going?" "Steve, good to see you!" "Two scoops of chocolate almond for me." "Vanilla shake." "Hey, I just saw something about the LHC on TV. You guys found bozo in your detector?" "Well, not exactly. We found a boson, probably the Higgs boson." "What's that?" "It's a particle." "Don't you find particles all the time?" "Yes, but this one means that the Higgs field might really exist." "Field? What field?" "The Higgs field. It's named after Peter Higgs, although many others contributed to the idea. It isn't a field, like where you grow corn, but a hypothetical, invisible kind of force field that pervades the whole universe." "Hmmmm, okay. If it pervades the whole universe, how come I've never seen it? That's a bit strange." "Well, actually, it's not that strange. Think of the air around us. We can't see it or smell it. Well, perhaps in some places we can. But we can detect its presence with sophisticated equipment, like our own bodies. So the fact that we can't see something just makes it a bit harder to determine whether its really there or not." "Alright, go on." "So, we believe this Higgs field is all around us, everywhere in the universe. And what it does is rather special - it gives mass to elementary particles." "What's an elementary particle?" "An elementary particle is what we call particles that have no structure, they can't be divided, they're the basic building blocks of the universe." "I thought those were atoms." "Well, atoms are actually made of smaller components, protons, neutrons, and electrons. While electrons are fundamental particles, neutrons and protons are not. They are made up of other fundamental particles called quarks." "Sounds like Russian dolls. Does it ever end?" "Actually, we don't really know. But our current understanding is called the Standard Model. In it, there are two types of fundamental particles: the fermions, that make up matter, and the bosons, that carry forces. We often order these particles according to their properties, such as mass. We can measure the masses of the particles, but we never really knew where this mass came from or why they have the masses they do." "So how does this Higgs field thing explain mass?" "Well, when a particle passes through the Higgs field, it interacts and gets mass. The more it interacts, the more mass it has." "OK, I kind of get that, but is it really that important? I mean, what if there were no Higgs field?" "If there were no Higgs field, the world wouldn't exist at all. There would be no stars, no planets, no air, no anything, not even that spoon or the ice cream you're eating." "Oh, that would be bad. Okay, but where does this Higgs boson fit into things?" "Alright, now, you see the cherry in my shake?" "Can I have it?" "No, not yet. We have to use it as an analogy first." "Oh, right, the cherry's the Higgs boson." "No, not quite. The cherry is a particle moving through the Higgs field, the shake. The shake gives the cherry its mass." "I get it. Okay, so the molecules of the shake are the Higgs bosons!" "Well, you're getting closer. It takes an excitation of the Higgs field to produce the Higgs boson. So, for example, if I were to add energy by, say, dropping this cherry in the shake," "Ah, then the drops that spill on the bar are the Higgs bosons." "Almost! The splash itself is the Higgs boson." "Are you serious?" "Well, that's what quantum mechanics teaches us. In fact, all particles are excitations of fields." "Okay, right. Well, I kind of see why you like particle physics, it's quite cool, strange, but cool." "Yeah, you could call it a bit strange, it's not like everyday life. The Higgs boson is an excitation of the Higgs field. By finding the Higgs boson, we know that the Higgs field exists." "Right. So now you found it, we know this Higgs field exists. You must be done. Is there anything left of particle physics?" "Actually, we've just begun. It's a bit like, you know, when Columbus thought he had found a new route to India. He'd, indeed, found something new, but not quite what he was expecting. So, first, we need to make sure that the boson we found is actually the Higgs boson. It seems to fit, but we need to measure its properties to be sure." "How'd you do that?" "Take a lot more data. This new boson lives for only a very short time before it breaks down or decays into lighter, more stable particles. By measuring these particles, you learn about the properties of the boson." "And what exactly are you looking for?" "Well, the Standard Model predicts how often and in what ways the Higgs boson would decay to the various, lighter particles. So we want to see if the particle we have found is the one predicted by the Standard Model or if it fits into other possible theoretical models." "And if it fits a different model?" "That would be even more exciting! In fact, that's how science advances. We replace old models with new ones if they better explain our observations." "Right, so it seems like finding this Higgs boson gives a direction for exploration, a bit like that Columbus guy heading west." "Exactly! And this is really just the beginning."

Name

The name boson was coined by Paul Dirac[3][4] to commemorate the contribution of Satyendra Nath Bose, an Indian physicist. When Bose was a reader (later professor) at the University of Dhaka, Bengal (now in Bangladesh),[5][6] he and Albert Einstein developed the theory characterising such particles, now known as Bose–Einstein statistics and Bose–Einstein condensate.[7]

Elementary bosons

All observed elementary particles are either bosons (with integer spin) or fermions (with odd half-integer spin).[8] Whereas the elementary particles that make up ordinary matter (leptons and quarks) are fermions, elementary bosons occupy a special role in particle physics. They act either as force carriers which give rise to forces between other particles, or in one case give rise to the phenomenon of mass.

According to the Standard Model of Particle Physics there are five elementary bosons:

  • A second order tensor boson (spin = 2) called the graviton (G) has been hypothesised as the force carrier for gravity, but so far all attempts to incorporate gravity into the Standard Model have failed.[a]

Composite bosons

Composite particles (such as hadrons, nuclei, and atoms) can be bosons or fermions depending on their constituents. Since bosons have integer spin and fermions odd half-integer spin, any composite particle made up of an even number of fermions is a boson.

Composite bosons include:

As quantum particles, the behaviour of multiple indistinguishable bosons at high densities is described by Bose–Einstein statistics. One characteristic which becomes important in superfluidity and other applications of Bose–Einstein condensates is that there is no restriction on the number of bosons that may occupy the same quantum state. As a consequence, when for example a gas of helium-4 atoms is cooled to temperatures very close to absolute zero and the kinetic energy of the particles becomes negligible, it condenses into a low-energy state and becomes a superfluid.

Quasiparticles

Certain quasiparticles are observed to behave as bosons and to follow Bose–Einstein statistics, including Cooper pairs, plasmons and phonons.[10]: 130 

See also

  • Anyon – Type of two-dimensional quasiparticle
  • Bose gas – State of matter of many bosons
  • Parastatistics – Notion in statistical mechanics

Explanatory notes

  1. ^ Despite being the carrier of the gravitational force which interacts with mass, most attempts at quantum gravity have expected the graviton to have no mass, just like the photon has no electric charge, and the W and Z bosons have no "flavour".
  2. ^ Even-mass-number nuclides comprise  153 / 254 = 60% of all stable nuclides. They are bosons, i.e. they have integer spin, and almost all of them (148 of the 153) are even-proton / even-neutron (EE) nuclides. The EE nuclides necessarily have spin 0 because of pairing. The remaining 5 stable bosonic nuclides are odd-proton / odd-neutron (OO) stable nuclides (see Even and odd atomic nuclei § Odd proton, odd neutron). The five odd–odd bosonic nuclides are:

    Each of the five has integer, nonzero spin.

References

  1. ^ "boson". Lexico UK English Dictionary. Oxford University Press. Archived from the original on 9 July 2021.
  2. ^ Wells, John C. (1990). Longman pronunciation dictionary. Harlow, England: Longman. ISBN 978-0582053830. entry "Boson"
  3. ^ Notes on Dirac's lecture Developments in Atomic Theory at Le Palais de la Découverte, 6 December 1945. UKNATARCHI Dirac Papers. BW83/2/257889.
  4. ^ Farmelo, Graham (25 August 2009). The Strangest Man: The Hidden Life of Paul Dirac, Mystic of the Atom. Basic Books. p. 331. ISBN 9780465019922.
  5. ^ Daigle, Katy (10 July 2012). "India: Enough about Higgs, let's discuss the boson". Associated Press. Retrieved 10 July 2012.
  6. ^ Bal, Hartosh Singh (19 September 2012). "The Bose in the Boson". Latitude (blog). The New York Times. Archived from the original on 22 September 2012. Retrieved 21 September 2012.
  7. ^ "Higgs boson: The poetry of subatomic particles". BBC News. 4 July 2012. Retrieved 6 July 2012.
  8. ^ Carroll, Sean (2007). Guidebook. Dark Matter, Dark Energy: The dark side of the universe. The Teaching Company. Part 2, p. 43. ISBN 978-1598033502. ... boson: A force-carrying particle, as opposed to a matter particle (fermion). Bosons can be piled on top of each other without limit. Examples are photons, gluons, gravitons, weak bosons, and the Higgs boson. The spin of a boson is always an integer: 0, 1, 2, and so on ...
  9. ^ Qaim, Syed M.; Spahn, Ingo; Scholten, Bernhard; Neumaier, Bernd (8 June 2016). "Uses of alpha particles, especially in nuclear reaction studies and medical radionuclide production". Radiochimica Acta. 104 (9): 601. doi:10.1515/ract-2015-2566. S2CID 56100709. Retrieved 22 May 2021.
  10. ^ Poole, Charles P. Jr. (11 March 2004). Encyclopedic Dictionary of Condensed Matter Physics. Academic Press. ISBN 978-0-08-054523-3.
This page was last edited on 10 February 2024, at 20:09
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.