To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

In mathematical analysis, and especially in real, harmonic analysis and functional analysis, an Orlicz space is a type of function space which generalizes the Lp spaces. Like the Lp spaces, they are Banach spaces. The spaces are named for Władysław Orlicz, who was the first to define them in 1932.

Besides the Lp spaces, a variety of function spaces arising naturally in analysis are Orlicz spaces. One such space L log+ L, which arises in the study of Hardy–Littlewood maximal functions, consists of measurable functions f such that the

Here log+ is the positive part of the logarithm. Also included in the class of Orlicz spaces are many of the most important Sobolev spaces. In addition, the Orlicz sequence spaces are examples of Orlicz spaces.

YouTube Encyclopedic

  • 1/5
    Views:
    536
    31 043
    5 187
    372
    4 416
  • Variable Exponent KFUPM
  • Lec - 07 Lp And L∞ Space (Definition And Norm)| L^p Space Is A Vector Space | Functional Analysis
  • PDE - Chapter III - Section 3.2
  • Andrea Colesanti: An overview on a young research topic: valuations on spaces of functions
  • Sobolev spaces - Part 1

Transcription

Terminology

These spaces are called Orlicz spaces by an overwhelming majority of mathematicians and by all monographies studying them, because Władysław Orlicz was the first who introduced them, in 1932.[1] Some mathematicians, including Wojbor Woyczyński, Edwin Hewitt and Vladimir Mazya, include the name of Zygmunt Birnbaum as well, referring to his earlier joint work with Władysław Orlicz. However in the Birnbaum–Orlicz paper the Orlicz space is not introduced, neither explicitly nor implicitly, hence the name Orlicz space is preferred. By the same reasons this convention has been also openly criticized by another mathematician (and an expert in the history of Orlicz spaces), Lech Maligranda.[2] Orlicz was confirmed as the person who introduced Orlicz spaces already by Stefan Banach in his 1932 monograph.[3]

Definition

Setup

μ is a σ-finite measure on a set X,

, is a Young function, i.e. convex, lower semicontinuous, and non-trivial, in the sense that it is not the zero function , and it is not the convex dual of the zero function

Orlicz spaces

Let be the set of measurable functions f : XR such that the integral

is finite, where, as usual, functions that agree almost everywhere are identified.

This might not be a vector space (i.e., it might fail to be closed under scalar multiplication). The vector space of functions spanned by is the Orlicz space, denoted . In other words, it is the smallest linear space containing . In other words,

There is another Orlicz space (the "small" Orlicz space) defined by
In other words, it is the largest linear space contained in .

Norm

To define a norm on , let Ψ be the Young complement of Φ; that is,

Note that Young's inequality for products holds:

The norm is then given by

Furthermore, the space is precisely the space of measurable functions for which this norm is finite.

An equivalent norm,[4]: §3.3  called the Luxemburg norm, is defined on LΦ by

and likewise is the space of all measurable functions for which this norm is finite.

Proposition.[5]

  • The two norms are equivalent in the sense that for all measurable .
  • By monotone convergence theorem, if , then .

Examples

For any , the space is the Orlicz space with Orlicz function . Here

When , the small and the large Orlicz spaces for are equal: .

Example where is not a vector space, and is strictly smaller than . Suppose that X is the open unit interval (0,1), Φ(x) = exp(x) – 1 – x, and f(x) = log(x). Then af is in the space but is only in the set if |a| < 1.

Properties

Proposition. The Orlicz norm is a norm.

Proof. Since for some , we have a.e.. That is obvious by definition. For triangular inequality, we have:

Theorem. The Orlicz space is a Banach space — a complete normed vector space.

Theorem.[5] are topological dual Banach spaces.

In particular, if , then are topological dual spaces. In particular, are dual Banach spaces when and .

Relations to Sobolev spaces

Certain Sobolev spaces are embedded in Orlicz spaces: for and open and bounded with Lipschitz boundary , we have

for

This is the analytical content of the Trudinger inequality: For open and bounded with Lipschitz boundary , consider the space with and . Then there exist constants such that

Orlicz norm of a random variable

Similarly, the Orlicz norm of a random variable characterizes it as follows:

This norm is homogeneous and is defined only when this set is non-empty.

When , this coincides with the p-th moment of the random variable. Other special cases in the exponential family are taken with respect to the functions (for ). A random variable with finite norm is said to be "sub-Gaussian" and a random variable with finite norm is said to be "sub-exponential". Indeed, the boundedness of the norm characterizes the limiting behavior of the probability distribution function:

so that the tail of the probability distribution function is bounded above by .

The norm may be easily computed from a strictly monotonic moment-generating function. For example, the moment-generating function of a chi-squared random variable X with K degrees of freedom is , so that the reciprocal of the norm is related to the functional inverse of the moment-generating function:

References

  1. ^ Über eine gewisse Klasse von Räumen vom Typus B, Bull. Internat. Acad. Polon. Sci. Lett., Class. Sci. Math. Natur.: Sér. A, Sci. Math. 1932:8/9, 207–220.
  2. ^ Lech Maligranda, Osiągnięcia polskich matematyków w teorii interpolacji operatorów: 1910–1960, 2015, „Wiadomości matematyczne”, 51, 239-281 (in Polish).
  3. ^ Stefan Banach, 1932, Théorie des opérations linéaires, Warszawa (p.202)
  4. ^ Rao, M.M.; Ren, Z.D. (1991). Theory of Orlicz Spaces. Pure and Applied Mathematics. Marcel Dekker. ISBN 0-8247-8478-2.
  5. ^ a b Léonard, Christian. "Orlicz spaces." (2007).

Further reading

External links

This page was last edited on 8 April 2024, at 02:18
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.