To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

One way of mapping terrestrial biomes around the world
One way of mapping terrestrial biomes around the world

A biome /ˈbm/ is a community of plants and animals that have common characteristics for the environment they exist in. They can be found over a range of continents. Biomes are distinct biological communities that have formed in response to a shared physical climate.[1][2] Biome is a broader term than habitat; any biome can comprise a variety of habitats.

While a biome can cover large areas, a microbiome is a mix of organisms that coexist in a defined space on a much smaller scale. For example, the human microbiome is the collection of bacteria, viruses, and other microorganisms that are present on or in a human body.[3]

A 'biota' is the total collection of organisms of a geographic region or a time period, from local geographic scales and instantaneous temporal scales all the way up to whole-planet and whole-timescale spatiotemporal scales. The biotas of the Earth make up the biosphere.

YouTube Encyclopedic

  • 1/5
    Views:
    752 533
    16 360
    202 938
    30 233
    693 899
  • ✪ Biomes of the World for Children: Oceans, Mountains, Grassland, Rainforest, Desert - FreeSchool
  • ✪ Biomes of World-(Desert-Rainforest-Taiga-Deciduous Forest-Grasslands-Savanna-Tundra)
  • ✪ Ecosystems and biomes | Ecology | Khan Academy
  • ✪ Ecosystems and Biomes | Classroom Learning Video
  • ✪ Introduction to Biomes

Transcription

You're watching FreeSchool! Every plant and animal on earth depends on other living organisms to survive. How these living things interact with the sun, air, water, and each other is called an ecosystem. Inside an ecosystem, the organisms work together to establish a balance that allows all of its members to thrive. When we talk about biomes, we mean a large group of similar ecosystems. All areas in a biome have similar plants, animals, and weather. There are many different biomes on Planet Earth, both on land, and in the water. Let's explore some of the many biomes on Planet Earth. First, let's visit the Marine Biome. The Marine Biome is made mostly of saltwater oceans and is the largest biome on Earth. It covers about 70% of the Earth's surface and is home to more than 230,000 known species. Animals that live in the marine biome include fish, sharks, octopus, seahorses, dolphins, manatees, seals, and whales, among many others. The blue whale, believed to be the largest animal that has ever lived on the earth, lives in the marine biome. Thousands of plant species live in the oceans, too. Ocean plants are extremely important, because they provide more than half of the oxygen on earth - that's more than every forest in the world. Algae, kelp, seaweed, and even tiny phytoplankton all live and grow in the ocean. There are many separate biomes within the ocean, based on changes to the temperature, nutrients, and amount of sunlight in the water. One special type of Marine biome is a Coral Reef. Coral reefs are only small areas of the ocean, but about 25% of known marine species live there. They are built up over thousands of years by tiny animals called 'polyps.' The polyps have a limestone skeleton, and as one generation of polyps die, the next generation grows on top of them, making the coral reef gradually bigger and bigger. Polyps depend on energy from algae that lives inside of them to survive. Since algae is a plant, they need sunlight to create food. That is why coral reefs are only found in warm, sunny water. Reefs provide food and shelter for many species, but they are vulnerable to destruction by pollution and overfishing by humans. The last type of aquatic biome we will visit is the Freshwater Biome. Unlike the marine biome, which is filled with salt water, freshwater biomes are filled with water that has very low levels of salt. For the most part, animals that can survive in salt water cannot survive in freshwater, and animals that can survive in freshwater cannot survive in salt water. Animals that live in or around freshwater biomes include fish, frogs, alligators, snakes, otters, turtles, and beavers. There are three main types of freshwater biomes. They are ponds and lakes - which have still water - streams and rivers - which have moving water, and wetlands - which are a combination of land and water. Let's move on to land biomes. First we're going to visit the Polar Regions. The polar ice caps in the arctic and antarctic are harsh places to live. Plants cannot grow on the ice, so most life in this biome is animal. By living at the edges of the ice caps, the animals that survive there are able to find food in the ocean - fish, mostly, or smaller animals. The south pole is mostly populated by penguins. Sea birds like albatrosses, petrels, and gulls, may also nest or visit there, and whales and seals thrive in the waters off the coast. At the north pole, you might find polar bears, as well as water-going mammals like seals, walruses, and whales. Their thick layers of fur or fat help to insulate them against the freezing cold. South of the Arctic lies the Tundra. The tundra is cold, an average of only 18 degrees F or negative 7 degrees celcius. There are only two seasons here: a long, dark winter, and a short summer. Because it is so close to the North Pole, during the winter the nights become longer and longer until the sun doesn't rise at all. The situation is reversed in the summer: days become longer, until the sun stays up all day and all night. Beneath a thin layer of top soil, the ground is permanently frozen, even during the summer when temperatures may reach 50 degrees F or 10 degrees celcius. This is called 'permafrost.' There are few nutrients here to sustain plants or animals. There are no trees: the growing season is too short. Plant life in the tundra consists of moss and grasses, or small shrubs. There are still animals to be found in the tundra. Arctic foxes and hares, snowy owls, musk ox, and caribou are just some of the animals that live there. Still farther south lie the forests. At colder latitudes, forests are dominated by evergreen trees. By keeping their needles all year round, they are able to make the most of the weaker sunlight. Farther south the pine trees mix with broadleaf trees that drop their leaves when the weather turns cold. Forests grow where it is not too hot, and not too cold; places with lots of nutrients and water available. As a result, a wide variety of plants and animals make forests their home. Moose, deer, bears, wolves, foxes, rabbits, and squirrels, as well as many, many kinds of birds and reptiles make their homes in forested biomes. Another type of biome is Grassland and Savanna. Grasslands are wide open land with low growing plants like grass and flowers. There is not enough rain in a grassland to support tall trees, but too much water to be a desert. A savanna is very similar to a grassland, but it may also have scattered trees. Many different types of grasses grow on grasslands and savannas, and many large herbivores live there. Often huge herds of grazing animals travel the grasslands together, seeking safety in numbers from the predators that hunt them. Although there are not many places for large animals to hide in the grass, there is plenty of cover for small animals like mice, snakes, rabbits and birds. In hotter climates we find the Tropical Rainforest. Rainforests are forests that get a lot of rain, and tropical rainforests are very humid and warm. Situated close to the equator, they stay warm year-round. Tropical rainforests have the greatest biodiversity - that is, the greatest number of plant and animal species - of any land biome in the world. Trees in the rainforest usually grow to at least 100 feet or 30 meters in height, and from the highest part of the canopy to the forest floor, tropical rainforests are teeming with life. Some rainforest animals never touch the ground for their entire lives! Small animals like monkeys, birds, snakes, frogs, and lizards are common in the rainforest. Sloths, monkeys, bats, anteaters, jaguars, and thousands upon thousands of insects live there, too. The rainforest is an important producer of oxygen for the world, as well as a home for about half of all the world's plant and animal species. Many new medicines have been found because of research on plants that grow there. Tropical rainforests are so large and dense that there are believed to be many unknown plant and animal species still to be discovered there, but rainforests are threatened with destruction as humans cut them down for wood and farmland. The last biome we will visit today is the Desert. Deserts are dry. Some are hot, and some are cold, but when most people think of deserts they think of hot places. Deserts in warm places may get very hot during the day, but because they are so dry, they are not able to hold in the heat from the sun, and they may drop to below freezing at night. Despite the harsh conditions, many plants and animals have learned how to survive in the desert. Cactus are a very famous kind of desert plant, but grasses, shrubs, and some kinds of small trees can grow there, too. Many kinds of desert plants - not just cactus - have some kind of thorns or sharp spines to help protect them from hungry animals. Many types of reptiles live in deserts: snakes, lizards, and tortoises. Birds like owls and hawks and mammals like camels, foxes, and desert hares have all discovered ways to survive and thrive in the desert, too. I hope you enjoyed learning about biomes of the world today. Good-bye till next time!

Contents

History of the concept

The term was suggested in 1916 by Clements, originally as a synonym for biotic community of Möbius (1877).[4] Later, it gained its current definition, based on earlier concepts of phytophysiognomy, formation and vegetation (used in opposition to flora), with the inclusion of the animal element and the exclusion of the taxonomic element of species composition.[5][6] In 1935, Tansley added the climatic and soil aspects to the idea, calling it ecosystem.[7][8] The International Biological Program (1964–74) projects popularized the concept of biome.[9]

However, in some contexts, the term biome is used in a different manner. In German literature, particularly in the Walter terminology, the term is used similarly as biotope (a concrete geographical unit), while the biome definition used in this article is used as an international, non-regional, terminology - irrespectively of the continent in which an area is present, it takes the same biome name - and corresponds to his "zonobiome", "orobiome" and "pedobiome" (biomes determined by climate zone, altitude or soil).[10]

In Brazilian literature, the term "biome" is sometimes used as synonym of "biogeographic province", an area based on species composition (the term "floristic province" being used when plant species are considered), or also as synonym of the "morphoclimatic and phytogeographical domain" of Ab'Sáber, a geographic space with subcontinental dimensions, with the predominance of similar geomorphologic and climatic characteristics, and of a certain vegetation form. Both include many biomes in fact.[5][11][12]

Classifications

To divide the world in a few ecological zones is a difficult attempt, notably because of the small-scale variations that exist everywhere on earth and because of the gradual changeover from one biome to the other. Their boundaries must therefore be drawn arbitrarily and their characterization made according to the average conditions that predominate in them.[13]

A 1978 study on North American grasslands[14] found a positive logistic correlation between evapotranspiration in mm/yr and above-ground net primary production in g/m2/yr. The general results from the study were that precipitation and water use led to above-ground primary production, while solar irradiation and temperature lead to below-ground primary production (roots), and temperature and water lead to cool and warm season growth habit.[15] These findings help explain the categories used in Holdridge’s bioclassification scheme (see below), which were then later simplified by Whittaker. The number of classification schemes and the variety of determinants used in those schemes, however, should be taken as strong indicators that biomes do not fit perfectly into the classification schemes created.

Holdridge (1947, 1964) life zones

Holdridge classified climates based on the biological effects of temperature and rainfall on vegetation under the assumption that these two abiotic factors are the largest determinants of the types of vegetation found in a habitat. Holdridge uses the four axes to define 30 so-called "humidity provinces", which are clearly visible in his diagram. While this scheme largely ignores soil and sun exposure, Holdridge acknowledged that these were important.

Allee (1949) biome-types

The principal biome-types by Allee (1949):[16]

  • Tundra
  • Taiga
  • Deciduous forest
  • Grasslands
  • Desert
  • High plateaus
  • Tropical forest
  • Minor terrestrial biomes

Kendeigh (1961) biomes

The principal biomes of the world by Kendeigh (1961):[17]

Whittaker (1962, 1970, 1975) biome-types

The distribution of vegetation types as a function of mean annual temperature and precipitation.
The distribution of vegetation types as a function of mean annual temperature and precipitation.

Whittaker classified biomes using two abiotic factors: precipitation and temperature. His scheme can be seen as a simplification of Holdridge's; more readily accessible, but missing Holdridge's greater specificity.

Whittaker based his approach on theoretical assertions and empirical sampling. He was in a unique position to make such a holistic assertion because he had previously compiled a review of biome classifications.[18]

Key definitions for understanding Whittaker's scheme

  • Physiognomy: the apparent characteristics, outward features, or appearance of ecological communities or species.
  • Biome: a grouping of terrestrial ecosystems on a given continent that is similar in vegetation structure, physiognomy, features of the environment and characteristics of their animal communities.
  • Formation: a major kind of community of plants on a given continent.
  • Biome-type: grouping of convergent biomes or formations of different continents, defined by physiognomy.
  • Formation-type: a grouping of convergent formations.

Whittaker's distinction between biome and formation can be simplified: formation is used when applied to plant communities only, while biome is used when concerned with both plants and animals. Whittaker's convention of biome-type or formation-type is simply a broader method to categorize similar communities.[19]

Whittaker's parameters for classifying biome-types

Whittaker, seeing the need for a simpler way to express the relationship of community structure to the environment, used what he called "gradient analysis" of ecocline patterns to relate communities to climate on a worldwide scale. Whittaker considered four main ecoclines in the terrestrial realm.[19]

  1. Intertidal levels: The wetness gradient of areas that are exposed to alternating water and dryness with intensities that vary by location from high to low tide
  2. Climatic moisture gradient
  3. Temperature gradient by altitude
  4. Temperature gradient by latitude

Along these gradients, Whittaker noted several trends that allowed him to qualitatively establish biome-types:

  • The gradient runs from favorable to the extreme, with corresponding changes in productivity.
  • Changes in physiognomic complexity vary with how favorable of an environment exists (decreasing community structure and reduction of stratal differentiation as the environment becomes less favorable).
  • Trends in the diversity of structure follow trends in species diversity; alpha and beta species diversities decrease from favorable to extreme environments.
  • Each growth-form (i.e. grasses, shrubs, etc.) has its characteristic place of maximum importance along the ecoclines.
  • The same growth forms may be dominant in similar environments in widely different parts of the world.

Whittaker summed the effects of gradients (3) and (4) to get an overall temperature gradient and combined this with a gradient (2), the moisture gradient, to express the above conclusions in what is known as the Whittaker classification scheme. The scheme graphs average annual precipitation (x-axis) versus average annual temperature (y-axis) to classify biome-types.

Biome-types

  1. Tropical rainforest
  2. Tropical seasonal rainforest
    • deciduous
    • semideciduous
  3. Temperate giant rainforest
  4. Montane rainforest
  5. Temperate deciduous forest
  6. Temperate evergreen forest
    • needleleaf
    • sclerophyll
  7. Subarctic-subalpin needle-leaved forests (taiga)
  8. Elfin woodland
  9. Thorn forests and woodlands
  10. Thorn scrub
  11. Temperate woodland
  12. Temperate shrublands
    • deciduous
    • heath
    • sclerophyll
    • subalpine-needleleaf
    • subalpine-broadleaf
  13. Savanna
  14. Temperate grassland
  15. Alpine grasslands
  16. Tundra
  17. Tropical desert
  18. Warm-temperate desert
  19. Cool temperate desert scrub
  20. Arctic-alpine desert
  21. Bog
  22. Tropical fresh-water swamp forest
  23. Temperate fresh-water swamp forest
  24. Mangrove swamp
  25. Salt marsh
  26. Wetland[20]

Goodall (1974-) ecosystem types

... The multiauthored series Ecosystems of the world, edited by David W. Goodall, provides a comprehensive coverage of the major "ecosystem types or biomes" on earth:[21]

  1. Terrestrial Ecosystems
    1. Natural Terrestrial Ecosystems
      1. Wet Coastal Ecosystems
      2. Dry Coastal Ecosystems
      3. Polar and Alpine Tundra
      4. Mires: Swamp, Bog, Fen, and Moor
      5. Temperate Deserts and Semi-Deserts
      6. Coniferous Forests
      7. Temperate Deciduous Forests
      8. Natural Grasslands
      9. Heathlands and Related Shrublands
      10. Temperate Broad-Leaved Evergreen Forests
      11. Mediterranean-Type Shrublands
      12. Hot Deserts and Arid Shrublands
      13. Tropical Savannas
      14. Tropical Rain Forest Ecosystems
      15. Wetland Forests
      16. Ecosystems of Disturbed Ground
    2. Managed Terrestrial Ecosystems
      1. Managed Grasslands
      2. Field Crop Ecosystems
      3. Tree Crop Ecosystems
      4. Greenhouse Ecosystems
      5. Bioindustrial Ecosystems
  2. Aquatic Ecosystems
    1. Inland Aquatic Ecosystems
      1. River and Stream Ecosystems
      2. Lakes and Reservoirs
    2. Marine Ecosystems
      1. Intertidal and Littoral Ecosystems
      2. Coral Reefs
      3. Estuaries and Enclosed Seas
      4. Ecosystems of the Continental Shelves
      5. Ecosystems of the Deep Ocean
    3. Managed Aquatic Ecosystems
      1. Managed Aquatic Ecosystems
  3. Underground Ecosystems
    1. Cave Ecosystems

Walter (1976, 2002) zonobiomes

The eponymously-named Heinrich Walter classification scheme considers the seasonality of temperature and precipitation. The system, also assessing precipitation and temperature, finds nine major biome types, with the important climate traits and vegetation types. The boundaries of each biome correlate to the conditions of moisture and cold stress that are strong determinants of plant form, and therefore the vegetation that defines the region. Extreme conditions, such as flooding in a swamp, can create different kinds of communities within the same biome.[10][22][23]

Zonobiome Zonal soil type Zonal vegetation type
ZB I. Equatorial, always moist, little temperature seasonality Equatorial brown clays Evergreen tropical rainforest
ZB II. Tropical, summer rainy season and cooler “winter” dry season Red clays or red earths Tropical seasonal forest, seasonal dry forest, scrub, or savanna
ZB III. Subtropical, highly seasonal, arid climate Serosemes, sierozemes Desert vegetation with considerable exposed surface
ZB IV. Mediterranean, winter rainy season and summer drought Mediterranean brown earths Sclerophyllous (drought-adapted), frost-sensitive shrublands and woodlands
ZB V. Warm temperate, occasional frost, often with summer rainfall maximum Yellow or red forest soils, slightly podsolic soils Temperate evergreen forest, somewhat frost-sensitive
ZB VI. Nemoral, moderate climate with winter freezing Forest brown earths and grey forest soils Frost-resistant, deciduous, temperate forest
ZB VII. Continental, arid, with warm or hot summers and cold winters Chernozems to serozems Grasslands and temperate deserts
ZB VIII. Boreal, cold temperate with cool summers and long winters Podsols Evergreen, frost-hardy, needle-leaved forest (taiga)
ZB IX. Polar, short, cool summers and long, cold winters Tundra humus soils with solifluction (permafrost soils) Low, evergreen vegetation, without trees, growing over permanently frozen soils

Schultz (1988) ecozones

Schultz (1988) defined nine ecozones (note that his concept of ecozone is more similar to the concept of biome used in this article than to the concept of ecozone of BBC):[24]

  1. polar/subpolar zone
  2. boreal zone
  3. humid mid-latitudes
  4. arid mid-latitudes
  5. tropical/subtropical arid lands
  6. Mediterranean-type subtropics
  7. seasonal tropics
  8. humid subtropics
  9. humid tropics

Bailey (1989) ecoregions

Robert G. Bailey nearly developed a biogeographical classification system of ecoregions for the United States in a map published in 1976. He subsequently expanded the system to include the rest of North America in 1981, and the world in 1989. The Bailey system, based on climate, is divided into seven domains (polar, humid temperate, dry, humid, and humid tropical), with further divisions based on other climate characteristics (subarctic, warm temperate, hot temperate, and subtropical; marine and continental; lowland and mountain).[25][26]

  • 100 Polar Domain
    • 120 Tundra Division (Köppen: Ft)
    • M120 Tundra Division – Mountain Provinces
    • 130 Subarctic Division (Köppen: E)
    • M130 Subarctic Division – Mountain Provinces
  • 200 Humid Temperate Domain
    • 210 Warm Continental Division (Köppen: portion of Dcb)
    • M210 Warm Continental Division – Mountain Provinces
    • 220 Hot Continental Division (Köppen: portion of Dca)
    • M220 Hot Continental Division – Mountain Provinces
    • 230 Subtropical Division (Köppen: portion of Cf)
    • M230 Subtropical Division – Mountain Provinces
    • 240 Marine Division (Köppen: Do)
    • M240 Marine Division – Mountain Provinces
    • 250 Prairie Division (Köppen: arid portions of Cf, Dca, Dcb)
    • 260 Mediterranean Division (Köppen: Cs)
    • M260 Mediterranean Division – Mountain Provinces
  • 300 Dry Domain
    • 310 Tropical/Subtropical Steppe Division
    • M310 Tropical/Subtropical Steppe Division – Mountain Provinces
    • 320 Tropical/Subtropical Desert Division
    • 330 Temperate Steppe Division
    • 340 Temperate Desert Division
  • 400 Humid Tropical Domain
    • 410 Savanna Division
    • 420 Rainforest Division

Olson & Dinerstein (1998) biomes for WWF / Global 200

A team of biologists convened by the World Wildlife Fund (WWF) developed a scheme that divided the world's land area into biogeographic realms (called "ecozones" in a BBC scheme), and these into ecoregions (Olson & Dinerstein, 1998, etc.). Each ecoregion is characterized by a main biome (also called major habitat type).[27][28]

This classification is used to define the Global 200 list of ecoregions identified by the WWF as priorities for conservation.[27]

For the terrestrial ecoregions, there is a specific EcoID, format XXnnNN (XX is the biogeographic realm, nn is the biome number, NN is the individual number).

Biogeographic realms (terrestrial and freshwater)

The applicability of the realms scheme above - based on Udvardy (1975) - to most freshwater taxa is unresolved.[29]

Biogeographic realms (marine)

Biomes (terrestrial)

  1. Tropical and subtropical moist broadleaf forests (tropical and subtropical, humid)
  2. Tropical and subtropical dry broadleaf forests (tropical and subtropical, semihumid)
  3. Tropical and subtropical coniferous forests (tropical and subtropical, semihumid)
  4. Temperate broadleaf and mixed forests (temperate, humid)
  5. Temperate coniferous forests (temperate, humid to semihumid)
  6. Boreal forests/taiga (subarctic, humid)
  7. Tropical and subtropical grasslands, savannas, and shrublands (tropical and subtropical, semiarid)
  8. Temperate grasslands, savannas, and shrublands (temperate, semiarid)
  9. Flooded grasslands and savannas (temperate to tropical, fresh or brackish water inundated)
  10. Montane grasslands and shrublands (alpine or montane climate)
  11. Tundra (Arctic)
  12. Mediterranean forests, woodlands, and scrub or sclerophyll forests (temperate warm, semihumid to semiarid with winter rainfall)
  13. Deserts and xeric shrublands (temperate to tropical, arid)
  14. Mangrove (subtropical and tropical, salt water inundated)[28]

Biomes (freshwater)

According to the WWF, the following are classified as freshwater biomes:[31]

Biomes (marine)

Biomes of the coastal and continental shelf areas (neritic zone):

Summary of the scheme

Example:

Other biomes

Marine biomes

Pruvot (1896) zones or "systems":[33]

Longhurst (1998) biomes:[34]

  • Coastal
  • Polar
  • Trade wind
  • Westerly

Other marine habitat types (not covered yet by the Global 200/WWF scheme):[citation needed]

Anthropogenic biomes

Humans have altered global patterns of biodiversity and ecosystem processes. As a result, vegetation forms predicted by conventional biome systems can no longer be observed across much of Earth's land surface as they have been replaced by crop and rangelands or cities. Anthropogenic biomes provide an alternative view of the terrestrial biosphere based on global patterns of sustained direct human interaction with ecosystems, including agriculture, human settlements, urbanization, forestry and other uses of land. Anthropogenic biomes offer a new way forward in ecology and conservation by recognizing the irreversible coupling of human and ecological systems at global scales and moving us toward an understanding of how best to live in and manage our biosphere and the anthropogenic biomes we live in.

Major anthropogenic biomes:

Microbial biomes

Endolithic biomes

The endolithic biome, consisting entirely of microscopic life in rock pores and cracks, kilometers beneath the surface, has only recently been discovered, and does not fit well into most classification schemes.[36]

See also

References

  1. ^ "The world's biomes". www.ucmp.berkeley.edu.
  2. ^ Cain, Michael; Bowman, William; Hacker, Sally (2014). Ecology (Third ed.). Massachusetts: Sinauer. p. 51. ISBN 9780878939084.
  3. ^ "Finally, A Map Of All The Microbes On Your Body". NPR.org.
  4. ^ Clements, F. E. 1917. The development and structure of biotic communities. J. Ecology 5:120–121. Abstract of a talk in 1916, [1].
  5. ^ a b Coutinho, L. M. (2006). O conceito de bioma. Acta Bot. Bras. 20(1): 13-23, [2].
  6. ^ Martins, F. R. & Batalha, M. A. (2011). Formas de vida, espectro biológico de Raunkiaer e fisionomia da vegetação. In: Felfili, J. M., Eisenlohr, P. V.; Fiuza de Melo, M. M. R.; Andrade, L. A.; Meira Neto, J. A. A. (Org.). Fitossociologia no Brasil: métodos e estudos de caso. Vol. 1. Viçosa: Editora UFV. p. 44-85. [3]. Earlier version, 2003, [4].
  7. ^ Cox, C. B., Moore, P.D. & Ladle, R. J. 2016. Biogeography: an ecological and evolutionary approach. 9th edition. John Wiley & Sons: Hoboken, p. 20, [5].
  8. ^ Tansley, A.G. (1935). The use and abuse of vegetational terms and concepts. Ecology 16 (3): 284–307, "Archived copy" (PDF). Archived from the original (PDF) on 2016-10-06. Retrieved 2016-09-24.CS1 maint: Archived copy as title (link).
  9. ^ Box, E.O. & Fujiwara, K. (2005). Vegetation types and their broad-scale distribution. In: van der Maarel, E. (ed.). Vegetation ecology. Blackwell Scientific, Oxford. pp 106–128, [6].
  10. ^ a b Walter, H. & Breckle, S-W. (2002). Walter's Vegetation of the Earth: The Ecological Systems of the Geo-Biosphere. New York: Springer-Verlag, p. 86, [7].
  11. ^ Batalha, M.A. (2011). The Brazilian cerrado is not a biome. Biota Neotrop. 11:21–4, [8].
  12. ^ Fiaschi, P.; Pirani, J.R. 2009. Review of plant biogeographic studies in Brazil. Journal of Systematics and Evolution, v. 47, p. 477-496. Disponível em: <https://www.researchgate.net/publication/249500929_Review_of_plant_biogeographic_studies_in_Brazil>.
  13. ^ Schultz, Jürgen (1995). The ecozones of the world. pp. 2–3. ISBN 3540582932.
  14. ^ Sims, Phillip L.; Singh, J.S. (July 1978). "The Structure and Function of Ten Western North American Grasslands: III. Net Primary Production, Turnover and Efficiencies of Energy Capture and Water Use". Journal of Ecology. British Ecological Society. 66 (2): 573–597. doi:10.2307/2259152.
  15. ^ Pomeroy, Lawrence R. and James J. Alberts, editors. Concepts of Ecosystem Ecology. New York: Springer-Verlag, 1988.
  16. ^ Allee, W.C. (1949). Principles of animal ecology. Philadelphia, Saunders Co., [9].
  17. ^ Kendeigh, S.C. (1961). Animal ecology. Englewood Cliffs, N.J., Prentice-Hall, [Englewood Cliffs, N.J., Prentice-Hall,1961.].
  18. ^ Whittaker, Robert H., Botanical Review, Classification of Natural Communities, Vol. 28, No. 1 (Jan–Mar 1962), pp. 1–239.
  19. ^ a b Whittaker, Robert H. Communities and Ecosystems. New York: MacMillan Publishing Company, Inc., 1975.
  20. ^ Whittaker, R. H. (1970). Communities and Ecosystems. Toronto, p. 51–64, [10].
  21. ^ Goodall, D. W. (editor-in-chief). Ecosystems of the World. Elsevier, Amsterdam. 36 vol., 1974-, [11].
  22. ^ Walter, H. 1976. Die ökologischen Systeme der Kontinente (Biogeosphäre). Prinzipien ihrer Gliederung mit Beispielen. Stuttgart.
  23. ^ Walter, H. & Breckle, S-W. (1991). Ökologie der Erde, Band 1, Grundlagen. Stuttgart.
  24. ^ Schultz, J. Die Ökozonen der Erde, 1st ed., Ulmer, Stuttgart, Germany, 1988, 488 pp.; 2nd ed., 1995, 535 pp.; 3rd ed., 2002. Transl.: The Ecozones of the World: The Ecological Divisions of the Geosphere. Berlin: Springer-Verlag, 1995; 2nd ed., 2005, [12].
  25. ^ http://www.fs.fed.us/land/ecosysmgmt/index.html Bailey System, US Forest Service
  26. ^ Bailey, R. G. 1989. Explanatory supplement to ecoregions map of the continents. Environmental Conservation 16: 307-309. [With map of land-masses of the world, "Ecoregions of the Continents — Scale 1 : 30,000,000", published as a supplement.]
  27. ^ a b Olson, D. M. & E. Dinerstein (1998). The Global 200: A representation approach to conserving the Earth’s most biologically valuable ecoregions. Conservation Biol. 12:502–515, [13].
  28. ^ a b c Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D'Amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., Kassem, K. R. (2001). Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51(11):933-938, [14].
  29. ^ Abell, R., M. Thieme, C. Revenga, M. Bryer, M. Kottelat, N. Bogutskaya, B. Coad, N. Mandrak, S. Contreras-Balderas, W. Bussing, M. L. J. Stiassny, P. Skelton, G. R. Allen, P. Unmack, A. Naseka, R. Ng, N. Sindorf, J. Robertson, E. Armijo, J. Higgins, T. J. Heibel, E. Wikramanayake, D. Olson, H. L. Lopez, R. E. d. Reis, J. G. Lundberg, M. H. Sabaj Perez, and P. Petry. (2008). Freshwater ecoregions of the world: A new map of biogeographic units for freshwater biodiversity conservation. BioScience 58:403-414, [15].
  30. ^ Spalding, M. D. et al. (2007). Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57: 573-583, [16].
  31. ^ "Freshwater Ecoregions of the World: Major Habitat Types" "Archived copy". Archived from the original on 2008-10-07. Retrieved 2008-05-13.CS1 maint: Archived copy as title (link). Accessed May 12, 2008.
  32. ^ WWF: Marine Ecoregions of the World
  33. ^ Pruvot, G. Conditions générales de la vie dans les mers et principes de distribution des organismes marins: Année Biologique, vol. 2, pp. 559—587, 1896, [17].
  34. ^ Longhurst, A. 1998. Ecological Geography of the Sea. San Diego: Academic Press, [18].
  35. ^ Zimmer, Carl (March 19, 2015). "The Next Frontier: The Great Indoors". The New York Times. Retrieved March 2015. Check date values in: |access-date= (help)
  36. ^ "What is the Endolithic Biome? (with picture)". wiseGEEK.

External links

This page was last edited on 11 May 2019, at 20:29
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.