To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Biological exponential growth

From Wikipedia, the free encyclopedia

Graph showing the exponential growth of three species of bacteria

Biological exponential growth is the unrestricted growth of a population of organisms, occurring when resources in its habitat are unlimited. Most commonly apparent in species that reproduce quickly and asexually, like bacteria, exponential growth is intuitive from the fact that each organism can divide and produce two copies of itself. Each descendent bacterium can itself divide, again doubling the population size. The bacterium Escherichia coli, under optimal conditions, may divide as often as twice per hour. Left unrestricted, a colony would cover the Earth's surface in less than a day.[1][2]

If, in a hypothetical population of size N, the birth rates (per capita) are represented as b and death rates (per capita) as d, then the increase or decrease in N during a time period t will be

(b-d) is called the 'intrinsic rate of natural increase' and is a very important parameter chosen for assessing the impacts of any biotic or abiotic factor on population growth.[3]

Resource availability is essential for the unimpeded growth of a population. Ideally, when resources in the habitat are unlimited, each species can fully realize its innate potential to grow in number, as Charles Darwin observed while developing his theory of natural selection. Any species growing exponentially under unlimited resource conditions can reach enormous population densities in a short time. Darwin showed how even a slow-growing animal like the elephant could theoretically reach an enormous population if there were unlimited resources for its growth in its habitat.[4] This is unrealistic in almost all situations (with exceptions, such as a laboratory); there is simply a finite quantity of everything necessary for life, and individuals in a population will compete with their own or other species for these finite resources.[5] As the population approaches its carrying capacity, the rate of growth decreases, and the population trend will become logistic.[6]

Once the carrying capacity, or K, is incorporated to account for the finite resources that a population will be competing for within an environment, the aforementioned equation becomes the following:

A graph of this equation creates an S-shaped curve, which demonstrates how initial population growth is exponential due to the abundance of resources and lack of competition. As resources become more limited, the growth rate tapers off, and eventually, once growth rates are at the carrying capacity of the environment, the population size will taper off.[6] This S-shaped curve observed in logistic growth is a more accurate model than exponential growth for observing real-life population growth of organisms.[5]

YouTube Encyclopedic

  • 1/3
    Views:
    258 167
    148 854
    856
  • Exponential Growth
  • Exponential and logistic growth in populations | Ecology | Khan Academy
  • Freeman Dyson - What is the Far Future of Intelligence in the Universe?

Transcription

See also

References

  1. ^ "Exponential & Logistic Growth". Khan Academy. Retrieved 15 January 2022.
  2. ^ Marr, A G (June 1991). "Growth rate of Escherichia coli". Microbiological Reviews. 55 (2): 316–333. doi:10.1128/mr.55.2.316-333.1991. PMC 372817. PMID 1886524.
  3. ^ Rye, Connie; Wise, Robert; Jurukovski, Vladimir; DeSaix, Jean; Choi, Jung; Avissar, Yael (October 21, 2016). Biology. Houston, Texas: OpenStax. Retrieved 15 January 2022.
  4. ^ "3.5: Darwin's elephants". Biology LibreTexts. 2019-09-07. Retrieved 2022-11-30.
  5. ^ a b "4.2 Population Growth and Regulation | Environmental Biology". courses.lumenlearning.com. Retrieved 2022-11-30.
  6. ^ a b Rye, Connie; Wise, Robert; Jurukovski, Vladimir; DeSaix, Jean; Choi, Jung; Avissar, Yael (October 21, 2016). Biology. Houston, Texas: OpenStax. Retrieved 15 January 2022.

Sources

John A. Miller and Stephen B. Harley zoology 4th edition

External links

  • "An Introduction to Population Growth". Sunny B. Snider (College of Agriculture, California State University, Chico) & Jacob N. Brimlow (College of Agriculture, California State University, Chico). Nature Education Library, 2013.
This page was last edited on 20 November 2023, at 04:26
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.