To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

Bingham distribution

From Wikipedia, the free encyclopedia

In statistics, the Bingham distribution, named after Christopher Bingham, is an antipodally symmetric probability distribution on the n-sphere.[1] It is a generalization of the Watson distribution and a special case of the Kent and Fisher-Bingham distributions.

The Bingham distribution is widely used in paleomagnetic data analysis,[2] and has been reported as being of use in the field of computer vision.[3][4][5]

Its probability density function is given by

which may also be written

where x is an axis (i.e., a unit vector), M is an orthogonal orientation matrix, Z is a diagonal concentration matrix, and is a confluent hypergeometric function of matrix argument. The matrices M and Z are the result of diagonalizing the positive-definite covariance matrix of the Gaussian distribution that underlies the Bingham distribution.

YouTube Encyclopedic

  • 1/1
    1 232
  • Mod06 Lec-49 Perspective n-point problem


See also


  1. ^ Bingham, Ch. (1974) "An antipodally symmetric distribution on the sphere". Annals of Statistics, 2(6):1201–1225.
  2. ^ Onstott, T.C. (1980) "Application of the Bingham distribution function in paleomagnetic studies". Journal of Geophysical Research, 85:1500–1510.
  3. ^ S. Teller and M. Antone (2000). Automatic recovery of camera positions in Urban Scenes
  4. ^ Haines, Tom S. F.; Wilson, Richard C. (2008). Computer Vision – ECCV 2008 (PDF). Lecture Notes in Computer Science. 5304. Springer. pp. 780–791. doi:10.1007/978-3-540-88690-7_58. ISBN 978-3-540-88689-1.
  5. ^ "Better robot vision: A neglected statistical tool could help robots better understand the objects in the world around them". MIT News. October 7, 2013. Retrieved October 7, 2013.
This page was last edited on 1 January 2021, at 00:08
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.