To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Binary octahedral group

From Wikipedia, the free encyclopedia

In mathematics, the binary octahedral group, name as 2O or ⟨2,3,4⟩[1] is a certain nonabelian group of order 48. It is an extension of the chiral octahedral group O or (2,3,4) of order 24 by a cyclic group of order 2, and is the preimage of the octahedral group under the 2:1 covering homomorphism of the special orthogonal group by the spin group. It follows that the binary octahedral group is a discrete subgroup of Spin(3) of order 48.

The binary octahedral group is most easily described concretely as a discrete subgroup of the unit quaternions, under the isomorphism where Sp(1) is the multiplicative group of unit quaternions. (For a description of this homomorphism see the article on quaternions and spatial rotations.)

YouTube Encyclopedic

  • 1/3
    Views:
    127 560
    14 723
    1 026
  • Octal to Binary and back again
  • Mod-02 Lec-02 Metal carbonyl complexes
  • Lecture 18: Gluing Algorithms

Transcription

Elements

48 elements seen in projection:
• 1 order-1: 1
• 1 order-2: -1
• 6 order-4: ±i, ±j, ±k
• 12 order-8: (±1±i)/√2, (±1±j)/√2, (±1±k)/√2
• 12 order-4: (±i±j)/√2, (±i±k)/√2, (±j±k)/√2
• 8 order-6, (+1±i±j±k)/2
• 8 order-3, (-1±i±j±k)/2.

Explicitly, the binary octahedral group is given as the union of the 24 Hurwitz units

with all 24 quaternions obtained from

by a permutation of coordinates and all possible sign combinations. All 48 elements have absolute value 1 and therefore lie in the unit quaternion group Sp(1).

Properties

The binary octahedral group, denoted by 2O, fits into the short exact sequence

This sequence does not split, meaning that 2O is not a semidirect product of {±1} by O. In fact, there is no subgroup of 2O isomorphic to O.

The center of 2O is the subgroup {±1}, so that the inner automorphism group is isomorphic to O. The full automorphism group is isomorphic to O × Z2.

Presentation

The group 2O has a presentation given by

or equivalently,

Quaternion generators with these relations are given by

with

Subgroups

The binary octahedral group 2O=⟨2,3,4⟩ order 48, has 3 primary subgroups:
• 2T=⟨2,3,3⟩, index 2,
Q16=⟨2,2,4⟩ index 3, and
Q12=⟨2,2,3⟩ index 4.
• ⟨l,m,n⟩=binary polyhedral group
• ⟨p⟩≃Z2p, (p)≃Zp (cyclic groups)

The binary tetrahedral group, 2T, consisting of the 24 Hurwitz units, forms a normal subgroup of index 2. The quaternion group, Q8, consisting of the 8 Lipschitz units forms a normal subgroup of 2O of index 6. The quotient group is isomorphic to S3 (the symmetric group on 3 letters). These two groups, together with the center {±1}, are the only nontrivial normal subgroups of 2O.

The generalized quaternion group, Q16, also forms a subgroup of 2O, index 3. This subgroup is self-normalizing so its conjugacy class has 3 members. There are also isomorphic copies of the binary dihedral groups Q8 and Q12 in 2O.

All other subgroups are cyclic groups generated by the various elements (with orders 3, 4, 6, and 8).[2]

Higher dimensions

The binary octahedral group generalizes to higher dimensions: just as the octahedron generalizes to the orthoplex, the octahedral group in SO(3) generalizes to the hyperoctahedral group in SO(n), which has a binary cover under the map

See also

References

  • Coxeter, H. S. M. & Moser, W. O. J. (1980). Generators and Relations for Discrete Groups, 4th edition. New York: Springer-Verlag. ISBN 0-387-09212-9.
  • Conway, John H.; Smith, Derek A. (2003). On Quaternions and Octonions. Natick, Massachusetts: AK Peters, Ltd. ISBN 1-56881-134-9.

Notes

  1. ^ Coxeter&Moser: Generators and Relations for discrete groups: <l,m,n>: Rl = Sm = Tn = RST
  2. ^ Binary octahedral group = on GroupNames
This page was last edited on 27 August 2021, at 15:18
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.