To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Biconditional introduction

From Wikipedia, the free encyclopedia

In propositional logic, biconditional introduction[1][2][3] is a valid rule of inference. It allows for one to infer a biconditional from two conditional statements. The rule makes it possible to introduce a biconditional statement into a logical proof. If is true, and if is true, then one may infer that is true. For example, from the statements "if I'm breathing, then I'm alive" and "if I'm alive, then I'm breathing", it can be inferred that "I'm breathing if and only if I'm alive". Biconditional introduction is the converse of biconditional elimination. The rule can be stated formally as:

where the rule is that wherever instances of "" and "" appear on lines of a proof, "" can validly be placed on a subsequent line.

YouTube Encyclopedic

  • 1/3
    Views:
    2 602
    2 581
    8 270
  • Logic 101 (#34.5): Biconditional Introduction and Elimination
  • Rules 8 and 9 Biconditional
  • Biconditional Statements

Transcription

Formal notation

The biconditional introduction rule may be written in sequent notation:

where is a metalogical symbol meaning that is a syntactic consequence when and are both in a proof;

or as the statement of a truth-functional tautology or theorem of propositional logic:

where , and are propositions expressed in some formal system.

References

  1. ^ Hurley
  2. ^ Moore and Parker
  3. ^ Copi and Cohen
This page was last edited on 14 January 2019, at 21:25
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.