To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Berkelium(III) nitrate

From Wikipedia, the free encyclopedia

Berkelium(III) nitrate

A 22 milligram solution of berkelium(III) nitrate, photographed c. 2009/10
Names
Other names
  • Berkelium trinitrate
Identifiers
3D model (JSmol)
  • [N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Bk+3]
Properties
Bk(NO3)3
Molar mass 433.01 g/mol
Appearance Light-green solid[1]
Melting point 450 °C (842 °F; 723 K)[1] decomposes
Solubility Soluble in nitric acid
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Radioactive
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Berkelium(III) nitrate is the berkelium salt of nitric acid with the formula Bk(NO3)3. It commonly forms the tetrahydrate, Bk(NO3)3·4H2O, which is a light green solid. If heated to 450 °C, it decomposes to berkelium(IV) oxide and 22 milligrams of the solution of this compound is reported to cost one million dollars.

Production and uses

Berkelium(III) nitrate is produced by the reaction of berkelium metal, the hydroxide,[1] or chloride[2] with nitric acid.[1] This compound has no commercial uses, but was used to synthesize the element tennessine. The aqueous compound was painted onto a titanium foil and was bombarded with calcium-48 atoms to synthesize the element tennessine.[3]

This compound is used as a pathway to pentavalent berkelium compounds by the collision-induced dissociation of this compound to produce BkO2(NO3)2 which contains berkelium in the +5 oxidation state.[2]

References

  1. ^ a b c d Haire, R. G., Proc. Rare Earth Res. Conf., loth, Carefree, Arizona, April-May, p. 882 (1973) doi:10.2172/4549027
  2. ^ a b Attila Kovács; Phuong D. Dau; Joaquim Marçalo; John K. Gibson (2018). "Pentavalent Curium, Berkelium, and Californium in Nitrate Complexes: Extending Actinide Chemistry and Oxidation States". Inorganic Chemistry. ACS Publications. 57 (15): 9453–9467. doi:10.1021/acs.inorgchem.8b01450. OSTI 1631597. PMID 30040397. S2CID 51717837.
  3. ^ J. B. Roberto; K. P. Rykaczewski (2016). "Discovery of element 117: Super-heavy elements and the "island of stability"". Separation Science and Technology. 53 (12): 1813–1819. doi:10.1080/01496395.2017.1290658. OSTI 1408011. S2CID 99111297.
This page was last edited on 18 January 2024, at 05:43
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.