To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Banach–Stone theorem

From Wikipedia, the free encyclopedia

In mathematics, the Banach–Stone theorem is a classical result in the theory of continuous functions on topological spaces, named after the mathematicians Stefan Banach and Marshall Stone.

In brief, the Banach–Stone theorem allows one to recover a compact Hausdorff space X from the Banach space structure of the space C(X) of continuous real- or complex-valued functions on X. If one is allowed to invoke the algebra structure of C(X) this is easy – we can identify X with the spectrum of C(X), the set of algebra homomorphisms into the scalar field, equipped with the weak*-topology inherited from the dual space C(X)*. The Banach-Stone theorem avoids reference to multiplicative structure by recovering X from the extreme points of the unit ball of C(X)*.

Statement

For a compact Hausdorff space X, let C(X) denote the Banach space of continuous real- or complex-valued functions on X, equipped with the supremum norm ‖·‖.

Given compact Hausdorff spaces X and Y, suppose T : C(X) → C(Y) is a surjective linear isometry. Then there exists a homeomorphism φ : Y → X and a function g ∈ C(Y) with

such that

The case where X and Y are compact metric spaces is due to Banach,[1] while the extension to compact Hausdorff spaces is due to Stone.[2] In fact, they both prove a slight generalization—they do not assume that T is linear, only that it is an isometry in the sense of metric spaces, and use the Mazur–Ulam theorem to show that T is affine, and so is a linear isometry.

Generalizations

The Banach–Stone theorem has some generalizations for vector-valued continuous functions on compact, Hausdorff topological spaces. For example, if E is a Banach space with trivial centralizer and X and Y are compact, then every linear isometry of C(XE) onto C(YE) is a strong Banach–Stone map.

A similar technique has also been used to recover a space X from the extreme points of the duals of some other spaces of functions on X.

The noncommutative analog of the Banach-Stone theorem is the folklore theorem that two unital C*-algebras are isomorphic if and only if they are completely isometric (i.e., isometric at all matrix levels). Mere isometry is not enough, as shown by the existence of a C*-algebra that is not isomorphic to its opposite algebra (which trivially has the same Banach space structure).

See also

References

  1. ^ Théorème 3 of Banach, Stefan (1932). Théorie des opérations linéaires. Warszawa: Instytut Matematyczny Polskiej Akademii Nauk. p. 170.
  2. ^ Theorem 83 of Stone, Marshall (1937). "Applications of the Theory of Boolean Rings to General Topology". Transactions of the American Mathematical Society. 41 (3): 375–481. doi:10.2307/1989788.
This page was last edited on 14 July 2023, at 06:37
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.