To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Bogomol'nyi–Prasad–Sommerfield state

From Wikipedia, the free encyclopedia

In theoretical physics, massive representations of an extended supersymmetry algebra called BPS states have mass equal to the supersymmetry central charge Z. Quantum mechanically, if the supersymmetry remains unbroken, exact equality to the modulus of Z exists. Their importance arises as the supermultiplets shorten for generic massive representations, with stability and mass formula exact.

YouTube Encyclopedic

  • 1/3
    Views:
    645
    735
    339
  • The homological algebra of knots and BPS states
  • Waves on a flat torus (triangular lattice)
  • Hodge Structures in Symplectic Geometry - Tony Pantev

Transcription

d = 4 N = 2

The generators for the odd part of the superalgebra have relations:[1]

where: are the Lorentz group indices, A and B are R-symmetry indices.

Take linear combinations of the above generators as follows:

Consider a state ψ which has 4 momentum . Applying the following operator to this state gives:

But because this is the square of a Hermitian operator, the right hand side coefficient must be positive for all .

In particular the strongest result from this is

Example applications

  • Supersymmetric black hole entropies[2]

See also

References

  1. ^ Moore, Gregory, PiTP Lectures on BPS States and Wall-Crossing in d=4, N=2 Theories (PDF)
  2. ^ Strominger, A.; Vafa, C. (1996). "Microscopic origin of the Bekenstein-Hawking entropy". Physics Letters B. 379 (1–4): 99–104. arXiv:hep-th/9601029. Bibcode:1996PhLB..379...99S. doi:10.1016/0370-2693(96)00345-0. S2CID 1041890.
  3. ^ Olsen, Kasper; Szabo, Richard (2000). "Constructing D-Branes from K-Theory" (PDF). Advances in Theoretical and Mathematical Physics. 4: 889–1025.


This page was last edited on 21 December 2023, at 16:28
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.