In mathematics, the axiom of power set is one of the Zermelo–Fraenkel axioms of axiomatic set theory.
In the formal language of the Zermelo–Fraenkel axioms, the axiom reads:
where y is the Power set of x, .
In English, this says:
 Given any set x, there is a set such that, given any set z, this set z is a member of if and only if every element of z is also an element of x.
More succinctly: for every set , there is a set consisting precisely of the subsets of .
Note the subset relation is not used in the formal definition as subset is not a primitive relation in formal set theory; rather, subset is defined in terms of set membership, . By the axiom of extensionality, the set is unique.
The axiom of power set appears in most axiomatizations of set theory. It is generally considered uncontroversial, although constructive set theory prefers a weaker version to resolve concerns about predicativity.
YouTube Encyclopedic

1/3Views:104 63979740 361

[Discrete Math 1] Subsets and Power Sets

(Axiomatic Set Theory, 5) Power Set Axiom and Axiom Schema of Comprehension

Axioms of set Theory  Lec 02  Frederic Schuller
Transcription
Consequences
The Power Set Axiom allows a simple definition of the Cartesian product of two sets and :
Notice that
and, for example, considering a model using the Kuratowski ordered pair,
and thus the Cartesian product is a set since
One may define the Cartesian product of any finite collection of sets recursively:
Note that the existence of the Cartesian product can be proved without using the power set axiom, as in the case of the Kripke–Platek set theory.
References
 Paul Halmos, Naive set theory. Princeton, NJ: D. Van Nostrand Company, 1960. Reprinted by SpringerVerlag, New York, 1974. ISBN 0387900926 (SpringerVerlag edition).
 Jech, Thomas, 2003. Set Theory: The Third Millennium Edition, Revised and Expanded. Springer. ISBN 3540440852.
 Kunen, Kenneth, 1980. Set Theory: An Introduction to Independence Proofs. Elsevier. ISBN 0444868399.
This article incorporates material from Axiom of power set on PlanetMath, which is licensed under the Creative Commons Attribution/ShareAlike License.