To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

Axiom of adjunction

From Wikipedia, the free encyclopedia

In mathematical set theory, the axiom of adjunction states that for any two sets x, y there is a set w = x ∪ {y} given by "adjoining" the set y to the set x. It is stated as

Bernays (1937, page 68, axiom II (2)) introduced the axiom of adjunction as one of the axioms for a system of set theory that he introduced in about 1929. It is a weak axiom, used in some weak systems of set theory such as general set theory or finitary set theory. The adjunction operation is also used as one of the operations of primitive recursive set functions.

YouTube Encyclopedic

  • 1/2
  • Adjoining Elements to a Ring Part 2
  • Mod-01 Lec-12 Formal Theories


Interpretability of arithmetic

Tarski and Szmielew showed that Robinson arithmetic () can be interpreted in a weak set theory whose axioms are extensionality, the existence of the empty set, and the axiom of adjunction (Tarski 1953, p.34). In fact, empty set and adjunction alone (without extensionality) suffice to interpret .[1] (They are mutually interpretable.)

Adding epsilon-induction to empty set and adjunction yields a theory that is mutually interpretable with Peano arithmetic (). Another axiom schema also yields a theory that is mutually interpretable with :[2]


where is not allowed to have free. This combines axioms of set theory: For trivially true it reduced to the adjunction axiom above, and for it gives the axiom of separation with .


  1. ^ Mancini, Antonella; Montagna, Franco (Spring 1994). "A minimal predicative set theory". Notre Dame Journal of Formal Logic. 35 (2): 186–203. doi:10.1305/ndjfl/1094061860. Retrieved 23 November 2021.
  2. ^ Friedman, Harvey M. (June 2, 2002). "Issues in the foundations of mathematics" (PDF). Department of Mathematics. Ohio State University. Retrieved January 18, 2023.
  • Bernays, Paul (1937), "A System of Axiomatic Set Theory--Part I", The Journal of Symbolic Logic, 2 (1), Association for Symbolic Logic: 65–77, doi:10.2307/2268862, JSTOR 2268862
  • Kirby, Laurence (2009), "Finitary Set Theory", Notre Dame J. Formal Logic, 50 (3): 227–244, doi:10.1215/00294527-2009-009, MR 2572972
  • Tarski, Alfred (1953), Undecidable theories, Studies in Logic and the Foundations of Mathematics, Amsterdam: North-Holland Publishing Company, MR 0058532
  • Tarski, Alfred; Givant, Steven R. (1987). A Formalization of Set Theory without Variables. AMS Colloquium Publications, v. 41. American Mathematical Soc. ISBN 978-0-8218-1041-5.

This page was last edited on 3 June 2024, at 16:11
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.