To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

Asymptotic distribution

From Wikipedia, the free encyclopedia

In mathematics and statistics, an asymptotic distribution is a probability distribution that is in a sense the "limiting" distribution of a sequence of distributions. One of the main uses of the idea of an asymptotic distribution is in providing approximations to the cumulative distribution functions of statistical estimators.

YouTube Encyclopedic

  • 1/3
    11 641
    5 887
    9 324
  • ✪ Asymptotic distribution of the maximum likelihood estimator(mle) - finding Fisher information
  • ✪ The Art of Asymptotic Approximation - LMS 1989
  • ✪ Asymptotic Normality of OLS parameter Estimators




A sequence of distributions corresponds to a sequence of random variables Zi for i = 1, 2, ..., I . In the simplest case, an asymptotic distribution exists if the probability distribution of Zi converges to a probability distribution (the asymptotic distribution) as I increases: see convergence in distribution. A special case of an asymptotic distribution is when the sequence of random variables is always zero or Zi = 0 as i approaches infinity. Here the asymptotic distribution is a degenerate distribution, corresponding to the value zero.

However, the most usual sense in which the term asymptotic distribution is used arises where the random variables Zi are modified by two sequences of non-random values. Thus if

converges in distribution to a non-degenerate distribution for two sequences {ai} and {bi} then Zi is said to have that distribution as its asymptotic distribution. If the distribution function of the asymptotic distribution is F then, for large n, the following approximations hold

If an asymptotic distribution exists, it is not necessarily true that any one outcome of the sequence of random variables is a convergent sequence of numbers. It is the sequence of probability distributions that converges.

Central limit theorem

Perhaps the most common distribution to arise as an asymptotic distribution is the normal distribution. In particular, the central limit theorem provides an example where the asymptotic distribution is the normal distribution.

Central limit theorem
Suppose {X1, X2, ...} is a sequence of i.i.d. random variables with E[Xi] = µ and Var[Xi] = σ2 < ∞. Let Sn be the average of {X1, ..., Xn}. Then as n approaches infinity, the random variables n(Sn − µ) converge in distribution to a normal N(0, σ2):[1]

The central limit theorem gives only an asymptotic distribution. As an approximation for a finite number of observations, it provides a reasonable approximation only when close to the peak of the normal distribution; it requires a very large number of observations to stretch into the tails.

Local asymptotic normality

Local asymptotic normality is a generalization of the central limit theorem. It is a property of a sequence of statistical models, which allows this sequence to be asymptotically approximated by a normal location model, after a rescaling of the parameter. An important example when the local asymptotic normality holds is in the case of independent and identically distributed sampling from a regular parametric model; this is just the central limit theorem.

Barndorff-Nielson & Cox provide a direct definition of asymptotic normality.[2]

See also


  1. ^ Billingsley, Patrick (1995). Probability and Measure (Third ed.). John Wiley & Sons. p. 357. ISBN 0-471-00710-2.
  2. ^ Barndorff-Nielsen, O. E.; Cox, D. R. (1989). Asymptotic Techniques for Use in Statistics. Chapman and Hall. ISBN 0-412-31400-2.
This page was last edited on 6 August 2019, at 14:46
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.