To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Glutathione-ascorbate cycle

From Wikipedia, the free encyclopedia

The glutathione-ascorbate cycle. Abbreviations are defined in the text.

The ascorbate-glutathione cycle, sometimes Foyer-Halliwell-Asada pathway, is a metabolic pathway that detoxifies hydrogen peroxide (H2O2), a reactive oxygen species that is produced as a waste product in metabolism. The cycle involves the antioxidant metabolites: ascorbate, glutathione and NADPH and the enzymes linking these metabolites.[1]

In the first step of this pathway, H2O2 is reduced to water by ascorbate peroxidase (APX) using ascorbate (ASC) as the electron donor. The oxidized ascorbate (monodehydroascorbate, MDA) is regenerated by monodehydroascorbate reductase (MDAR).[2] However, monodehydroascorbate is a radical and if not rapidly reduced it disproportionates into ascorbate and dehydroascorbate (DHA). Dehydroascorbate is reduced to ascorbate by dehydroascorbate reductase (DHAR) at the expense of GSH, yielding oxidized glutathione (GSSG). Finally GSSG is reduced by glutathione reductase (GR) using NADPH as the electron donor. Thus ascorbate and glutathione are not consumed; the net electron flow is from NADPH to H2O2. The reduction of dehydroascorbate may be non-enzymatic or catalysed by proteins with dehydroascorbate reductase activity, such as glutathione S-transferase omega 1 or glutaredoxins.[3][4]

In plants, the glutathione-ascorbate cycle operates in the cytosol, mitochondria, plastids and peroxisomes.[5][6] Since glutathione, ascorbate and NADPH are present in high concentrations in plant cells it is assumed that the glutathione-ascorbate cycle plays a key role for H2O2 detoxification. Nevertheless, other enzymes (peroxidases) including peroxiredoxins and glutathione peroxidases, which use thioredoxins or glutaredoxins as reducing substrates, also contribute to H2O2 removal in plants.[7]

See also

References

  1. ^ Noctor G, Foyer CH (Jun 1998). "ASCORBATE AND GLUTATHIONE: Keeping Active Oxygen Under Control". Annu Rev Plant Physiol Plant Mol Biol. 49: 249–279. doi:10.1146/annurev.arplant.49.1.249. PMID 15012235.
  2. ^ Wells WW, Xu DP (August 1994). "Dehydroascorbate reduction". J. Bioenerg. Biomembr. 26 (4): 369–77. doi:10.1007/BF00762777. PMID 7844111. S2CID 24723138.
  3. ^ Whitbread AK, Masoumi A, Tetlow N, Schmuck E, Coggan M, Board PG (2005). "Characterization of the omega class of glutathione transferases". Meth. Enzymol. Methods in Enzymology. 401: 78–99. doi:10.1016/S0076-6879(05)01005-0. ISBN 9780121828066. PMID 16399380.
  4. ^ Rouhier N, Gelhaye E, Jacquot JP (2002). "Exploring the active site of plant glutaredoxin by site-directed mutagenesis". FEBS Lett. 511 (1–3): 145–9. doi:10.1016/S0014-5793(01)03302-6. PMID 11821065. S2CID 29816004.
  5. ^ Meyer A (Sep 2009). "The integration of glutathione homeostasis and redox signaling". J Plant Physiol. 165 (13): 1390–403. doi:10.1016/j.jplph.2007.10.015. PMID 18171593.
  6. ^ Jimenez A, Hernandez JA, Pastori G, del Rio LA, Sevilla F (Dec 1998). "Role of the Ascorbate-Glutathione Cycle of Mitochondria and Peroxisomes in the Senescence of Pea Leaves". Plant Physiol. 118 (4): 1327–35. doi:10.1104/pp.118.4.1327. PMC 34748. PMID 9847106.
  7. ^ Rouhier N, Lemaire SD, Jacquot JP (2008). "The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation" (PDF). Annu Rev Plant Biol. 59: 143–66. doi:10.1146/annurev.arplant.59.032607.092811. PMID 18444899.
This page was last edited on 18 August 2023, at 09:33
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.