To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Apollonius's theorem

From Wikipedia, the free encyclopedia

green/blue areas = red area
Pythagoras as a special case:
green area = red area

In geometry, Apollonius's theorem is a theorem relating the length of a median of a triangle to the lengths of its sides. It states that "the sum of the squares of any two sides of any triangle equals twice the square on half the third side, together with twice the square on the median bisecting the third side".

Specifically, in any triangle if is a median, then

It is a special case of Stewart's theorem. For an isosceles triangle with the median is perpendicular to and the theorem reduces to the Pythagorean theorem for triangle (or triangle ). From the fact that the diagonals of a parallelogram bisect each other, the theorem is equivalent to the parallelogram law.

The theorem is named for the ancient Greek mathematician Apollonius of Perga.

YouTube Encyclopedic

  • 1/5
    Views:
    1 556
    31 869
    2 206
    441
    446
  • Geometry: Apollonius's Theorem
  • Apollonius theorem with proof and best example || QOD || By Abhinay Sharma (Abhinay Maths)
  • Apollonius's theorem | Geometry | Quantitative Aptitude for CAT & GMAT
  • Apollonius' Theorem - Triangle Median Length
  • Evaluate a trigonometric expression using Apollonius's theorem and the law of cosines.

Transcription

Proof

Proof of Apollonius's theorem

The theorem can be proved as a special case of Stewart's theorem, or can be proved using vectors (see parallelogram law). The following is an independent proof using the law of cosines.[1]

Let the triangle have sides with a median drawn to side Let be the length of the segments of formed by the median, so is half of Let the angles formed between and be and where includes and includes Then is the supplement of and The law of cosines for and states that

Add the first and third equations to obtain

as required.

See also

References

  1. ^ Godfrey, Charles; Siddons, Arthur Warry (1908). Modern Geometry. University Press. p. 20.

External links

This page was last edited on 19 March 2024, at 11:45
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.