To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Apolipoprotein H

From Wikipedia, the free encyclopedia

APOH
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesAPOH, B2G1, B2GP1, BG, apolipoprotein H
External IDsOMIM: 138700 MGI: 88058 HomoloGene: 26 GeneCards: APOH
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000042

NM_013475

RefSeq (protein)

NP_000033

NP_038503

Location (UCSC)Chr 17: 66.21 – 66.26 MbChr 11: 108.23 – 108.31 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

β2-glycoprotein 1, also known as beta-2 glycoprotein 1 and Apolipoprotein H (Apo-H), is a 38 kDa multifunctional plasma protein that in humans is encoded by the APOH gene.[5] One of its functions is to bind cardiolipin. When bound, the structure of cardiolipin and β2-GP1 both undergo large changes in structure.[6] Within the structure of Apo-H is a stretch of positively charged amino acids (protein sequence positions 282-287), Lys-Asn-Lys-Glu-Lys-Lys, are involved in phospholipid binding (see image on right).[7]

β2-GP1 has a complex involvement in agglutination. It appears to alter adenosine diphosphate (ADP)-mediated agglutination of platelets.[8] Normally, β2-GP1 assumes an anticoagulation activity in serum (by inhibiting coagulation factors); however, changes in blood factors can result in a reversal of that activity.

Although previously referred to as apolipoprotein H, it is not present in appreciable quantities in the lipoprotein fractions, so ApoH is therefore thought to be a misnomer.[9]

YouTube Encyclopedic

  • 1/2
    Views:
    114 040
    574
  • Antiphospholipid syndrome - causes, symptoms, diagnosis, treatment, pathology
  • How yFFP-Young Plasma can help reverse Parkinsons and MS Symptoms!

Transcription

Inhibitory activities

β2-GP1 appears to completely inhibit serotonin release by the platelets[10] and prevents subsequent waves of the ADP-induced aggregation. The activity of β2-GP1 appears to involve the binding of agglutinating, negatively charged compounds, and inhibits agglutination by the contact activation of the intrinsic blood coagulation pathway.[11] β2-GP1 causes a reduction of the prothrombinase binding sites on platelets and reduces the activation caused by collagen when thrombin is present at physiological serum concentrations of β2-GP1 suggesting a regulatory role of β2-GP1 in coagulation.[12]

β2-GP1 also inhibits the generation of factor Xa in the presence of platelets.[13] β2-GP1 also inhibits that activation of factor XIIa.[14]

In addition, β2-GP1 inhibits the activation of protein C blocking its activity on phosphatidylserine:phosphatidylcholine vesicles[15] however once protein C is activated, Apo-H fails to inhibit activity. Since protein C is involved in factor Va degradation Apo-H indirectly inhibits the degradation of factor Va.[16] This inhibitory activity is diminished by adding phospholipids suggesting the Apo-H inhibition of protein C is phospholipid competitive.[17] This indicates that under certain conditions Apo-H takes on procoagulation properties.

Pathology

Anti-β2-GP1 antibodies are found in both infectious and some systemic autoimmune diseases (eg. systemic lupus erythematosus (SLE)).[18] Positivity for anti-cardiolipin antibodies in diagnostic tests for autoimmune antiphospholipid syndrome requires the presence of β2-GP1in the cardiolipin extract.[19][20] Anti-β2-GP1 antibodies are strongly associated with thrombotic forms of lupus.

Sushi 2 protein domain

Sushi_2
NMR structure of the fifth domain of human beta-2 glycoprotein 1
Identifiers
SymbolSushi_2
PfamPF09014
InterProIPR015104
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

In molecular biology, the protein domain Sushi 2 is also known as the fifth protein domain of beta-2 glycoprotein 1 (β2-GP1). This protein domain is only found in eukaryotes. The first four domains found in Apolipoprotein H resemble each other, however the fifth one appears to be different.[21]

Structure

This protein domain is composed of four well-defined anti-parallel beta-strands and two short alpha-helices, as well as a long highly flexible loop.[22] Additionally, the fifth protein domain appears to resemble the other four in Apolipoprotein with the exception of three internal disulfide bonds and an extra C-terminal loop.[21]

Function

Its exact function remains to be fully elucidated; however it is known to play an important role in the binding of β2-GP1 to negatively charged compounds and subsequent capture for binding of anti-β2-GP1 antibodies.[22] Development of antibodies against β2-GP1 can lead to Antiphospholipid syndrome which often leads to pregnancy complications.[21]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000091583 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000000049 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ "APOH - Beta-2-glycoprotein 1 precursor - Homo sapiens (Human) - APOH gene & protein". UniProt. Retrieved 5 May 2019.
  6. ^ Borchman D, Harris EN, Pierangeli SS, Lamba OP (1995). "Interactions and molecular structure of cardiolipin and beta 2-glycoprotein 1 (beta 2-GP1)". Clin. Exp. Immunol. 102 (2): 373–8. doi:10.1111/j.1365-2249.1995.tb03792.x. PMC 1553418. PMID 7586693.
  7. ^ Sheng Y, Sali A, Herzog H, Lahnstein J, Krilis SA (1996). "Site-directed mutagenesis of recombinant human beta 2-glycoprotein I identifies a cluster of lysine residues that are critical for phospholipid binding and anti-cardiolipin antibody activity". J. Immunol. 157 (8): 3744–51. doi:10.4049/jimmunol.157.8.3744. PMID 8871678. S2CID 12529388.
  8. ^ Nimpf J, Wurm H, Kostner GM (1985). "Interaction of beta 2-glycoprotein-I with human blood platelets: influence upon the ADP-induced aggregation". Thromb. Haemost. 54 (2): 397–401. doi:10.1055/s-0038-1657748. PMID 4082080. S2CID 23669362.
  9. ^ Ağar C, de Groot PG, Levels JH, Marquart JA, Meijers JC (January 2009). "Beta2-glycoprotein I is incorrectly named apolipoprotein H". Journal of Thrombosis and Haemostasis. 7 (1): 235–6. doi:10.1111/j.1538-7836.2008.03223.x. PMID 19017258. S2CID 43329586.
  10. ^ Nimpf J, Wurm H, Kostner GM (1987). "Beta 2-glycoprotein-I (apo-H) inhibits the release reaction of human platelets during ADP-induced aggregation". Atherosclerosis. 63 (2–3): 109–14. doi:10.1016/0021-9150(87)90110-9. PMID 3827975.
  11. ^ Schousboe I (1985). "beta 2-Glycoprotein I: a plasma inhibitor of the contact activation of the intrinsic blood coagulation pathway". Blood. 66 (5): 1086–91. doi:10.1182/blood.V66.5.1086.1086. PMID 4052628.
  12. ^ Nimpf J, Bevers EM, Bomans PH, et al. (1986). "Prothrombinase activity of human platelets is inhibited by beta 2-glycoprotein-I". Biochim. Biophys. Acta. 884 (1): 142–9. doi:10.1016/0304-4165(86)90237-0. PMID 3768409.
  13. ^ Shi W, Chong BH, Hogg PJ, Chesterman CN (1993). "Anticardiolipin antibodies block the inhibition by beta 2-glycoprotein I of the factor Xa generating activity of platelets". Thromb. Haemost. 70 (2): 342–5. doi:10.1055/s-0038-1649577. PMID 8236146. S2CID 35371017.
  14. ^ Schousboe I, Rasmussen MS (1995). "Synchronized inhibition of the phospholipid mediated autoactivation of factor XII in plasma by beta 2-glycoprotein I and anti-beta 2-glycoprotein I". Thromb. Haemost. 73 (5): 798–804. doi:10.1055/s-0038-1653871. PMID 7482406. S2CID 89295513.
  15. ^ Keeling DM, Wilson AJ, Mackie IJ, Isenberg DA, Machin SJ (1993). "Role of beta 2-glycoprotein I and anti-phospholipid antibodies in activation of protein C in vitro". J. Clin. Pathol. 46 (10): 908–11. doi:10.1136/jcp.46.10.908. PMC 501616. PMID 8227406.
  16. ^ Matsuda J, Gohchi K, Kawasugi K, Gotoh M, Saitoh N, Tsukamoto M (1995). "Inhibitory activity of anti-beta 2-glycoprotein I antibody on factor Va degradation by activated-protein C and its cofactor protein S". Am. J. Hematol. 49 (1): 89–91. doi:10.1002/ajh.2830490116. PMID 7741146. S2CID 42539225.
  17. ^ Mori T, Takeya H, Nishioka J, Gabazza EC, Suzuki K (1996). "beta 2-Glycoprotein I modulates the anticoagulant activity of activated protein C on the phospholipid surface". Thromb. Haemost. 75 (1): 49–55. doi:10.1055/s-0038-1650220. PMID 8713779. S2CID 34123144.
  18. ^ Kumar KS, Jyothy A, Prakash MS, Rani HS, Reddy PP (2002). "Beta2-glycoprotein I dependent anticardiolipin antibodies and lupus anticoagulant in patients with recurrent pregnancy loss". Journal of Postgraduate Medicine. 48 (1): 5–10. PMID 12082318.
  19. ^ McNeil HP, Simpson RJ, Chesterman CN, Krilis SA (1990). "Anti-phospholipid antibodies are directed against a complex antigen that includes a lipid-binding inhibitor of coagulation: beta 2-glycoprotein I (apolipoprotein H)". Proc. Natl. Acad. Sci. U.S.A. 87 (11): 4120–4. Bibcode:1990PNAS...87.4120M. doi:10.1073/pnas.87.11.4120. PMC 54059. PMID 2349221.
  20. ^ Hunt JE, McNeil HP, Morgan GJ, Crameri RM, Krilis SA (1992). "A phospholipid-beta 2-glycoprotein I complex is an antigen for anticardiolipin antibodies occurring in autoimmune disease but not with infection". Lupus. 1 (2): 75–81. doi:10.1177/096120339200100204. PMID 1301967. S2CID 35296154.
  21. ^ a b c Shi T, Giannakopoulos B, Iverson GM, Cockerill KA, Linnik MD, Krilis SA (2005). "Domain V of beta2-glycoprotein I binds factor XI/XIa and is cleaved at Lys317-Thr318". J Biol Chem. 280 (2): 907–12. doi:10.1074/jbc.M410291200. PMID 15522884.
  22. ^ a b Hoshino M, Hagihara Y, Nishii I, Yamazaki T, Kato H, Goto Y (December 2000). "Identification of the phospholipid-binding site of human beta(2)-glycoprotein I domain V by heteronuclear magnetic resonance". J. Mol. Biol. 304 (5): 927–39. doi:10.1006/jmbi.2000.4243. PMID 11124037.

External links

This page was last edited on 13 August 2023, at 19:08
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.