To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Aperiodic finite state automaton

From Wikipedia, the free encyclopedia

An aperiodic finite-state automaton (also called a counter-free automaton) is a finite-state automaton whose transition monoid is aperiodic.

YouTube Encyclopedic

  • 1/3
    Views:
    236 389
    6 549
    13 042
  • Markov Chains: Recurrence, Irreducibility, Classes | Part - 2
  • 6.2.1 Finite State Machines
  • L25.5 Recurrent and Transient States: Review

Transcription

Properties

A regular language is star-free if and only if it is accepted by an automaton with a finite and aperiodic transition monoid. This result of algebraic automata theory is due to Marcel-Paul Schützenberger.[1] In particular, the minimum automaton of a star-free language is always counter-free (however, a star-free language may also be recognized by other automata that are not aperiodic).

A counter-free language is a regular language for which there is an integer n such that for all words x, y, z and integers mn we have xymz in L if and only if xynz in L. For these languages, when a string contains enough repetitions of any substring (at least n repetitions), changing the number of repetitions to another number that is at least n cannot change membership in the language. (This is automatically true when y is the empty string, but becomes a nontrivial condition when y is non-empty.) Another way to state Schützenberger's theorem is that star-free languages and counter-free languages are the same thing.

An aperiodic automaton satisfies the Černý conjecture.[2]

References

  1. ^ Schützenberger, Marcel-Paul (1965). "On Finite Monoids Having Only Trivial Subgroups" (PDF). Information and Control. 8 (2): 190–194. doi:10.1016/s0019-9958(65)90108-7.
  2. ^ Trahtman, Avraham N. (2007). "The Černý conjecture for aperiodic automata". Discrete Math. Theor. Comput. Sci. 9 (2): 3–10. ISSN 1365-8050. Zbl 1152.68461. Archived from the original on 2015-09-23. Retrieved 2014-04-05.


This page was last edited on 21 March 2024, at 22:49
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.