To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Ancient solution

From Wikipedia, the free encyclopedia

In mathematics, an ancient solution to a differential equation is a solution that can be extrapolated backwards to all past times, without singularities. That is, it is a solution "that is defined on a time interval of the form (−∞, T)."[1]

The term was introduced by Richard Hamilton in his work on the Ricci flow.[2] It has since been applied to other geometric flows[3][4][5][6] as well as to other systems such as the Navier–Stokes equations[7][8] and heat equation.[9]

YouTube Encyclopedic

  • 1/3
    Views:
    18 027
    105 919
    1 806 011
  • EASY Way To Divide Without Long Division (Ancient Egyptian Method)
  • The Story of Maths
  • Math Trick - Multiply Using Lines!

Transcription

References

  1. ^ Perelman, Grigori (2002), The entropy formula for the Ricci flow and its geometric applications, arXiv:math/0211159, Bibcode:2002math.....11159P.
  2. ^ Hamilton, Richard S. The formation of singularities in the Ricci flow. Surveys in differential geometry, Vol. II (Cambridge, MA, 1993), 7–136, Int. Press, Cambridge, MA, 1995
  3. ^ Loftin, John; Tsui, Mao-Pei (2008), "Ancient solutions of the affine normal flow", Journal of Differential Geometry, 78 (1): 113–162, arXiv:math/0602484, doi:10.4310/jdg/1197320604, MR 2406266, S2CID 420652.
  4. ^ Daskalopoulos, Panagiota; Hamilton, Richard; Sesum, Natasa (2010), "Classification of compact ancient solutions to the curve shortening flow", Journal of Differential Geometry, 84 (3): 455–464, arXiv:0806.1757, Bibcode:2008arXiv0806.1757D, doi:10.4310/jdg/1279114297, MR 2669361, S2CID 18747005.
  5. ^ You, Qian (2014), Some Ancient Solutions of Curve Shortening, Ph.D. thesis, University of Wisconsin–Madison, ProQuest 1641120538.
  6. ^ Huisken, Gerhard; Sinestrari, Carlo (2015), "Convex ancient solutions of the mean curvature flow", Journal of Differential Geometry, 101 (2): 267–287, arXiv:1405.7509, doi:10.4310/jdg/1442364652, MR 3399098.
  7. ^ Seregin, Gregory A. (2010), "Weak solutions to the Navier-Stokes equations with bounded scale-invariant quantities", Proceedings of the International Congress of Mathematicians, vol. III, Hindustan Book Agency, New Delhi, pp. 2105–2127, MR 2827878.
  8. ^ Barker, T.; Seregin, G. (2015), "Ancient solutions to Navier-Stokes equations in half space", Journal of Mathematical Fluid Mechanics, 17 (3): 551–575, arXiv:1503.07428, Bibcode:2015JMFM...17..551B, doi:10.1007/s00021-015-0211-z, MR 3383928, S2CID 119138067.
  9. ^ Wang, Meng (2011), "Liouville theorems for the ancient solution of heat flows", Proceedings of the American Mathematical Society, 139 (10): 3491–3496, doi:10.1090/S0002-9939-2011-11170-5, MR 2813381.


This page was last edited on 5 January 2024, at 15:31
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.