To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Amorphous metal transformer

From Wikipedia, the free encyclopedia

An amorphous metal transformer (AMT) is a type of energy efficient transformer found on electric grids.[1] The magnetic core of this transformer is made with a ferromagnetic amorphous metal. The typical material (Metglas) is an alloy of iron with boron, silicon, and phosphorus in the form of thin (e.g. 25 μm) foils rapidly cooled from melt. These materials have high magnetic susceptibility, very low coercivity and high electrical resistance. The high resistance and thin foils lead to low losses by eddy currents when subjected to alternating magnetic fields. On the downside amorphous alloys have a lower saturation induction and often a higher magnetostriction compared to conventional crystalline iron-silicon electrical steel.[2]

YouTube Encyclopedic

  • 1/3
    Views:
    361
    3 375
    441
  • Transformer Amorphous Alloy Core
  • CAETG - Amorphous transformer makes a greener world
  • advantages of amorphous core type distribution transformer

Transcription

Core loss and copper loss

In a transformer the no-load loss is dominated by the core loss. With an amorphous core, this can be 70–80% lower than with traditional crystalline materials[citation needed]. The loss under heavy load is dominated by the resistance of the copper windings and thus called copper loss. Here the lower saturation magnetization of amorphous cores tends to result in a lower efficiency at full load. Using more copper and core material it is possible to compensate for this. So high efficiency AMTs can be more efficient at low and high load, though at a larger size. The more expensive amorphous core material, the more difficult handling and the need for more copper windings make an AMT more expensive than a traditional transformer[citation needed].

Applications

The main application of AMTs are the grid distribution transformers rated at about 50–1000 kVA. These transformers typically run 24 hours a day and at a low load factor (average load divided by nominal load). The no load loss of these transformers makes up a significant part of the loss of the whole distribution net. Amorphous iron is also used in specialized electric motors that operate at high frequencies of perhaps 350 Hz or more.[3]

Advantages and disadvantages

More efficient transformers lead to a reduction of generation requirement and, when using electric power generated from fossil fuels, less CO2 emissions. This technology has been widely adopted by large developing countries such as China[4] and India[5] where labour cost is low.[citation needed] AMT are in fact more labour-intensive than conventional distribution transformers, a reason that explains a very low adoption in the comparable (by size) European market. These two countries can potentially save 25–30 TWh electricity annually, eliminate 6-8 GW generation investment, and reduce 20–30 million tons of CO2 emission by fully utilizing this technology.[6]

Notes and references

  1. ^ Kennedy, Barry (1998), Energy Efficient Transformers, McGraw-Hill
  2. ^ K.Inagaki, M. Kuwabara et al., Hitachi Review 60(2011) no. 5 pp250, http://www.hitachi.com/rev/archive/2011/__icsFiles/afieldfile/2011/09/06/2011_05_113.pdf[permanent dead link]
  3. ^ "Understanding the basics of amorphous-iron motors". machinedesign.com.
  4. ^ "SPC Note on T&D network loss reduction and energy saving plan" SPC Transportation and Energy Section, Document #123, 1997 (in Chinese).
  5. ^ B.S.K. Naidu, "Amorphous Metal Transformers—New Technology Developments", Keynote Speech, CBIP-AlliedSignal Seminar (India), April 1999.
  6. ^ Li, Jerry (2011), Review and The Future of Amorphous Metal Transformers in Asia - a brief industry update, AEPN. Available at Researchgate or the author's personal page

External links

This page was last edited on 7 June 2024, at 06:13
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.