To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Aminoacyl tRNA synthetases, class I

From Wikipedia, the free encyclopedia

Glutamyl/glutaminyl-tRNA synthetase, class Ic
Identifiers
SymbolGlu/Gln-tRNA-synth_Ic
PfamPF00749
InterProIPR000924
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
PDBPDB: 1euqPDB: 1euyPDB: 1exdPDB: 1g59PDB: 1glnPDB: 1gsgPDB: 1gtrPDB: 1gtsPDB: 1irxPDB: 1j09

The aminoacyl-tRNA synthetases catalyse the attachment of an amino acid to its cognate transfer RNA molecule in a highly specific two-step reaction. These proteins differ widely in size and oligomeric state, and have limited sequence homology.[1] The 20 aminoacyl-tRNA synthetases are divided into two classes, I and II. Class I aminoacyl-tRNA synthetases contain a characteristic Rossmann fold catalytic domain and are mostly monomeric.[2] Class II aminoacyl-tRNA synthetases share an anti-parallel beta-sheet fold flanked by alpha-helices,[3] and are mostly dimeric or multimeric, containing at least three conserved regions.[4][5][6] However, tRNA binding involves an alpha-helical structure that is conserved between class I and class II synthetases. In reactions catalysed by the class I aminoacyl-tRNA synthetases, the aminoacyl group is coupled to the 2'-hydroxyl of the tRNA, while, in class II reactions, the 3'-hydroxyl site is preferred. The synthetases specific for arginine, cysteine, glutamic acid, glutamine, isoleucine, leucine, methionine, tyrosine, tryptophan and valine belong to class I synthetases; these synthetases are further divided into three subclasses, a, b and c, according to sequence homology. The synthetases specific for alanine, asparagine, aspartic acid, glycine, histidine, lysine, phenylalanine, proline, serine, and threonine belong to class-II synthetases.[7]

Glutamyl-tRNA synthetase (EC 6.1.1.17) is a class Ic synthetase and shows several similarities with glutaminyl-tRNA synthetase concerning structure and catalytic properties. It is an alpha2 dimer. To date one crystal structure of a glutamyl-tRNA synthetase (Thermus thermophilus) has been solved. The molecule has the form of a bent cylinder and consists of four domains. The N-terminal half (domains 1 and 2) contains the 'Rossman fold' typical for class I synthetases and resembles the corresponding part of E. coli GlnRS, whereas the C-terminal half exhibits a GluRS-specific structure.[8]

YouTube Encyclopedic

  • 1/3
    Views:
    27 766
    16 271
    2 676
  • Translation (Part 3 of 8) - Aminoacyl tRNA Synthetase Reaction
  • Aminoacyl tRNA Synthetase
  • Aminoacyl tRNA synthetase

Transcription

Human proteins containing this domain

EARS2; EPRS; PIG32; QARS;

References

  1. ^ Delarue M, Moras D, Poch O, Eriani G, Gangloff J (1990). "Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs". Nature. 347 (6289): 203–206. Bibcode:1990Natur.347..203E. doi:10.1038/347203a0. PMID 2203971. S2CID 4324290.
  2. ^ Moras D, Konno M, Shimada A, Nureki O, Tateno M, Yokoyama S, Sugiura I, Ugaji-Yoshikawa Y, Kuwabara S, Lorber B, Giege R (2000). "The 2.0 A crystal structure of Thermus thermophilus methionyl-tRNA synthetase reveals two RNA-binding modules". Structure. 8 (2): 197–208. doi:10.1016/S0969-2126(00)00095-2. PMID 10673435.
  3. ^ Perona JJ, Steitz TA, Rould MA (1993). "Structural basis for transfer RNA aminoacylation by Escherichia coli glutaminyl-tRNA synthetase". Biochemistry. 32 (34): 8758–8771. doi:10.1021/bi00085a006. PMID 8364025.
  4. ^ Delarue M, Moras D (1993). "The aminoacyl-tRNA synthetase family: modules at work". BioEssays. 15 (10): 675–687. doi:10.1002/bies.950151007. PMID 8274143. S2CID 35612984.
  5. ^ Schimmel P (1991). "Classes of aminoacyl-tRNA synthetases and the establishment of the genetic code". Trends Biochem. Sci. 16 (1): 1–3. doi:10.1016/0968-0004(91)90002-D. PMID 2053131.
  6. ^ Cusack S, Leberman R, Hartlein M (1991). "Sequence, structural and evolutionary relationships between class 2 aminoacyl-tRNA synthetases". Nucleic Acids Res. 19 (13): 3489–3498. doi:10.1093/nar/19.13.3489. PMC 328370. PMID 1852601.
  7. ^ Bairoch A (2004). "List of aminoacyl-tRNA synthetases". {{cite journal}}: Cite journal requires |journal= (help)
  8. ^ Soll D, Freist W, Gauss DH, Lapointe J (1997). "Glutamyl-tRNA sythetase". Biol. Chem. 378 (11): 1313–1329. doi:10.1515/bchm.1997.378.11.1299. PMID 9426192.
This article incorporates text from the public domain Pfam and InterPro: IPR000924
This page was last edited on 12 December 2022, at 19:16
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.