To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Alternating multilinear map

From Wikipedia, the free encyclopedia

In mathematics, more specifically in multilinear algebra, an alternating multilinear map is a multilinear map with all arguments belonging to the same vector space (for example, a bilinear form or a multilinear form) that is zero whenever any pair of its arguments is equal. This generalizes directly to a module over a commutative ring.

The notion of alternatization (or alternatisation) is used to derive an alternating multilinear map from any multilinear map of which all arguments belong to the same space.

YouTube Encyclopedic

  • 1/3
    Views:
    8 571
    704 167
    40 764
  • Shifrin Math 3510 Day25: Differential forms, the multilinear setup
  • Linear transformations | Matrix transformations | Linear Algebra | Khan Academy
  • Tensor products

Transcription

Definition

Let be a commutative ring and , be modules over . A multilinear map of the form is said to be alternating if it satisfies the following equivalent conditions:

  1. whenever there exists such that then .[1][2]
  2. whenever there exists such that then .[1][3]

Vector spaces

Let be vector spaces over the same field. Then a multilinear map of the form is alternating if it satisfies the following condition:

  • if are linearly dependent then .

Example

In a Lie algebra, the Lie bracket is an alternating bilinear map. The determinant of a matrix is a multilinear alternating map of the rows or columns of the matrix.

Properties

If any component of an alternating multilinear map is replaced by for any and in the base ring , then the value of that map is not changed.[3]

Every alternating multilinear map is antisymmetric,[4] meaning that[1]

or equivalently,
where denotes the permutation group of degree and is the sign of .[5] If is a unit in the base ring , then every antisymmetric -multilinear form is alternating.

Alternatization

Given a multilinear map of the form the alternating multilinear map defined by

is said to be the alternatization of .

Properties

  • The alternatization of an -multilinear alternating map is times itself.
  • The alternatization of a symmetric map is zero.
  • The alternatization of a bilinear map is bilinear. Most notably, the alternatization of any cocycle is bilinear. This fact plays a crucial role in identifying the second cohomology group of a lattice with the group of alternating bilinear forms on a lattice.

See also

Notes

  1. ^ a b c Lang 2002, pp. 511–512
  2. ^ Bourbaki 2007, A III.80, §4
  3. ^ a b Dummit & Foote 2004, p. 436
  4. ^ Rotman 1995, p. 235
  5. ^ Tu 2011, p. 23

References

  • Bourbaki, N. (2007). Eléments de mathématique. Vol. Algèbre Chapitres 1 à 3 (reprint ed.). Springer.
  • Dummit, David S.; Foote, Richard M. (2004). Abstract Algebra (3rd ed.). Wiley.
  • Lang, Serge (2002). Algebra. Graduate Texts in Mathematics. Vol. 211 (revised 3rd ed.). Springer. ISBN 978-0-387-95385-4. OCLC 48176673.
  • Rotman, Joseph J. (1995). An Introduction to the Theory of Groups. Graduate Texts in Mathematics. Vol. 148 (4th ed.). Springer. ISBN 0-387-94285-8. OCLC 30028913.
  • Tu, Loring W. (2011). An Introduction to Manifolds. Springer-Verlag New York. ISBN 978-1-4419-7400-6.
This page was last edited on 19 December 2023, at 22:04
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.