To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Protein fold class

From Wikipedia, the free encyclopedia

A summary of functional annotation of the most ancestral translation protein folds

In molecular biology, protein fold classes are broad categories of protein tertiary structure topology. They describe groups of proteins that share similar amino acid and secondary structure proportions. Each class contains multiple, independent protein superfamilies (i.e. are not necessarily evolutionarily related to one another).[1][2][3]

YouTube Encyclopedic

  • 1/3
    Views:
    396 960
    701 727
    94 143
  • Four levels of protein structure | Chemical processes | MCAT | Khan Academy
  • Proteins
  • Protein Structure

Transcription

So why is it so important to learn about protein structure? Well, let's take the example of Alzheimer's disease, which affects the brain. So in certain people as they age, proteins and their neurons start to become misfolded and then form aggregates outside of the neurons, and this is called amyloid. So amyloid is really just clumps of misfolded proteins that look a bit like this. And as you can see, as this amyloid builds up, it starts to interfere with the neuron's ability to send messages, and this leads to dementia and memory loss. So if we can understand how these proteins become misfolded in the first place, then we might be able to find a cure for this debilitating disease. And to understand how proteins become misfolded, we must first understand how they become properly folded. So before we begin, I just want to do a quick review of terms. You can have one amino acid, so I'll just write AA for amino acid. And then you can have two amino acids that are linked together by a peptide bond. So this is a peptide bond. And as you add more and more amino acids to this chain of amino acids, you start to get what is called a polypeptide, or many peptide, bonds. And each amino acid within this polypeptide is then termed a residue. And then proteins consist of one or more polypeptides. And so I will use the terms polypeptide and protein interchangeably. So at the most basic level, you have primary structure. And primary structure just describes the linear sequence of amino acids, and it is determined by the peptide bond linking each amino acid. So if I were to take my amyloid example from Alzheimer's disease and I stretch out that protein all the way, then this linear sequence is just the primary structure. So then, moving on, we have secondary structure. And secondary structure just refers to the way that the linear sequence of amino acids folds upon itself. This is determined by backbone interactions. And this is determined primarily by hydrogen bonds. There are two motifs or patterns that you should be familiar with, the first of which is called an alpha helix. And if you were to take this polypeptide and wrap it around itself into a coil-like structure, just like so, then you'd have the alpha helix. And the hydrogen bonds just run up and down, stabilizing this coiled structure. And another motif or pattern that you can be familiar with is with a beta sheet, and that just looks like this. It kind of looks more like a zigzag pattern. And the beta sheet is stabilized by hydrogen bonds, just like so. And if you have the amino ends and the carboxyl ends line up, like so, then this sheet is called a parallel beta sheet. And then conversely, if you have a single polypeptide that is then wrapping up upon itself just like this, and you have the hydrogen bond stabilizing like so, then you have the amino end coming around and lining up with the carboxyl end, and you have an anti-parallel configuration. There is a third level of protein structure called tertiary structure, and tertiary structure just refers to a higher order of folding within a polypeptide chain. And so you can kind of think of it as the many different folds within a polypeptide, which then fold upon each other again. And so this depends on distant group interaction, so distant interactions. And just like secondary structure, it is stabilized by hydrogen bonds, but you also have some other interactions that come into play, such as van der Waals interactions. You also have hydrophobic packing, and also disulfide bridge formation. So if we explore hydrophobic packing just a little bit more over here-- say we have a folded up polypeptide or protein. And this protein is found within the watery polar environment of the interior of a cell. So if we have water on the exterior of this protein, then we will find all of the polar groups on the exterior interacting with this water. And then on the interior, you would find the nonpolar or hydrophobic groups hiding from the water. Disulfide bridges, on the other hand, describe an interaction that happens only between cystines. So cystines are a type of amino acid that have a special thiol group as part of its side-chain. And this thiol group has a sulfur atom that can become oxidized, and when this oxidation occurs, you get the formation of a covalent bond between the sulfur groups. The formation of a disulfide bridge happens on the exterior of a cell, and you tend to see the formation of separated thiol groups on the interior of a cell. And that is because the interior of the cell has antioxidants, which generate a reducing environment. And since the exterior of a cell lacks these antioxidants, you get an oxidizing environment. So if I were to ask you which environment favors the formation of disulfide bridges, you would say the extracellular space does. Then there is one final level of protein structure, and that is called quaternary structure. And quaternary structure describes the bonding between multiple polypeptides. The same interactions that determine tertiary structure play a role in quaternary structure. And so let's say I have one folded up polypeptide, two folded up polypeptides, and a third and a fourth. The quaternary structure is described by the interactions between these four polypeptides. And within the completed protein structure, each individual polypeptide is termed a subunit. Since this protein has four subunits, it is called a tetramer. And so if I were to have two subunits, it would be called a dimer, three would be called a trimer, and then anything above four is called a multimer. So the term for a completely properly folded up protein is called the proper confirmation of a protein. And to achieve the proper confirmation, you must have the correct primary structure, secondary structure, tertiary structure, and quaternary structure. And if any of these levels of protein structure were to break down, then you start to have misfolding, which can then contribute to any of a number of disease states.

Generally recognised classes

Four large classes of protein that are generally agreed upon by the two main structure classification databases (SCOP and CATH).

all-α

All-α proteins are a class of structural domains in which the secondary structure is composed entirely of α-helices, with the possible exception of a few isolated β-sheets on the periphery.

Common examples include the bromodomain, the globin fold and the homeodomain fold.

all-β

All-β proteins are a class of structural domains in which the secondary structure is composed entirely of β-sheets, with the possible exception of a few isolated α-helices on the periphery.

Common examples include the SH3 domain, the beta-propeller domain, the immunoglobulin fold and B3 DNA binding domain.

α+β

α+β proteins are a class of structural domains in which the secondary structure is composed of α-helices and β-strands that occur separately along the backbone. The β-strands are therefore mostly antiparallel.[4]

Common examples include the ferredoxin fold, ribonuclease A, and the SH2 domain.

α/β

α/β proteins are a class of structural domains in which the secondary structure is composed of alternating α-helices and β-strands along the backbone. The β-strands are therefore mostly parallel.[4]

Common examples include the flavodoxin fold, the TIM barrel and leucine-rich-repeat (LRR) proteins such as ribonuclease inhibitor.

Additional classes

Membrane proteins

Membrane proteins interact with biological membranes either by inserting into it, or being tethered via a covalently attached lipid. They are one of the common types of protein along with soluble globular proteins, fibrous proteins, and disordered proteins.[5] They are targets of over 50% of all modern medicinal drugs.[6] It is estimated that 20–30% of all genes in most genomes encode membrane proteins.[7]

Intrinsically disordered proteins

Intrinsically disordered proteins lack a fixed or ordered three-dimensional structure.[8][9][10] IDPs cover a spectrum of states from fully unstructured to partially structured and include random coils, (pre-)molten globules, and large multi-domain proteins connected by flexible linkers. They constitute one of the main types of protein (alongside globular, fibrous and membrane proteins).[5]

Coiled coil proteins

Coiled coil proteins form long, insoluble fibers involved in the extracellular matrix. There are many scleroprotein superfamilies including keratin, collagen, elastin, and fibroin. The roles of such proteins include protection and support, forming connective tissue, tendons, bone matrices, and muscle fiber.

Small proteins

Small proteins typically have a tertiary structure that is maintained by disulphide bridges (cysteine-rich proteins), metal ligands (metal-binding proteins), and or cofactors such as heme.

Designed proteins

Numerous protein structures are the result of rational design and do not exist in nature. Proteins can be designed from scratch (de novo design) or by making calculated variations on a known protein structure and its sequence (known as protein redesign). Rational protein design approaches make protein-sequence predictions that will fold to specific structures. These predicted sequences can then be validated experimentally through methods such as peptide synthesis, site-directed mutagenesis, or Artificial gene synthesis.

See also

References

  1. ^ Hubbard, Tim J. P.; Murzin, Alexey G.; Brenner, Steven E.; Chothia, Cyrus (1997-01-01). "SCOP: a Structural Classification of Proteins database". Nucleic Acids Research. 25 (1): 236–239. doi:10.1093/nar/25.1.236. ISSN 0305-1048. PMC 146380. PMID 9016544.
  2. ^ Greene, Lesley H.; Lewis, Tony E.; Addou, Sarah; Cuff, Alison; Dallman, Tim; Dibley, Mark; Redfern, Oliver; Pearl, Frances; Nambudiry, Rekha (2007-01-01). "The CATH domain structure database: new protocols and classification levels give a more comprehensive resource for exploring evolution". Nucleic Acids Research. 35 (suppl 1): D291–D297. doi:10.1093/nar/gkl959. ISSN 0305-1048. PMC 1751535. PMID 17135200.
  3. ^ Fox, Naomi K.; Brenner, Steven E.; Chandonia, John-Marc (2014-01-01). "SCOPe: Structural Classification of Proteins—extended, integrating SCOP and ASTRAL data and classification of new structures". Nucleic Acids Research. 42 (D1): D304–D309. doi:10.1093/nar/gkt1240. ISSN 0305-1048. PMC 3965108. PMID 24304899.
  4. ^ a b Efimov, Alexander V. (1995). "Structural Similarity between Two-layer α/β and β-Proteins". Journal of Molecular Biology. 245 (4): 402–415. doi:10.1006/jmbi.1994.0033. PMID 7837272.
  5. ^ a b Andreeva, A (2014). "SCOP2 prototype: a new approach to protein structure mining". Nucleic Acids Res. 42 (Database issue): D310–4. doi:10.1093/nar/gkt1242. PMC 3964979. PMID 24293656.
  6. ^ Overington JP, Al-Lazikani B, Hopkins AL (December 2006). "How many drug targets are there?". Nat Rev Drug Discov. 5 (12): 993–6. doi:10.1038/nrd2199. PMID 17139284. S2CID 11979420.
  7. ^ Krogh, A.; Larsson, B. R.; Von Heijne, G.; Sonnhammer, E. L. L. (2001). "Predicting transmembrane protein topology with a hidden markov model: Application to complete genomes". Journal of Molecular Biology. 305 (3): 567–580. doi:10.1006/jmbi.2000.4315. PMID 11152613. S2CID 15769874.
  8. ^ Dunker, A. K.; Lawson, J. D.; Brown, C. J.; Williams, R. M.; Romero, P; Oh, J. S.; Oldfield, C. J.; Campen, A. M.; Ratliff, C. M.; Hipps, K. W.; Ausio, J; Nissen, M. S.; Reeves, R; Kang, C; Kissinger, C. R.; Bailey, R. W.; Griswold, M. D.; Chiu, W; Garner, E. C.; Obradovic, Z (2001). "Intrinsically disordered protein". Journal of Molecular Graphics & Modelling. 19 (1): 26–59. CiteSeerX 10.1.1.113.556. doi:10.1016/s1093-3263(00)00138-8. PMID 11381529.
  9. ^ Dyson HJ, Wright PE (March 2005). "Intrinsically unstructured proteins and their functions". Nat. Rev. Mol. Cell Biol. 6 (3): 197–208. doi:10.1038/nrm1589. PMID 15738986. S2CID 18068406.
  10. ^ Dunker AK, Silman I, Uversky VN, Sussman JL (December 2008). "Function and structure of inherently disordered proteins". Curr. Opin. Struct. Biol. 18 (6): 756–64. doi:10.1016/j.sbi.2008.10.002. PMID 18952168.
This page was last edited on 25 October 2023, at 18:10
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.