To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Affinity maturation

From Wikipedia, the free encyclopedia

In immunology, affinity maturation is the process by which TFH cell-activated B cells produce antibodies with increased affinity for antigen during the course of an immune response. With repeated exposures to the same antigen, a host will produce antibodies of successively greater affinities. A secondary response can elicit antibodies with several fold greater affinity than in a primary response. Affinity maturation primarily occurs on membrane immunoglobulin of germinal center B cells and as a direct result of somatic hypermutation (SHM) and selection by TFH cells.[1]

YouTube Encyclopedic

  • 1/3
    Views:
    285 567
    3 674
    1 383
  • Immunology - Adaptive Immunity (B cell Activation, Hypermutation and Class Switching Overview)
  • 3 Technology Maturation & Risk Reduction Phase Overview
  • Affinity, Avidity and Cross Reactivity

Transcription

In vivo

The process is thought to involve two interrelated processes, occurring in the germinal centers of the secondary lymphoid organs:

  1. Somatic hypermutation: Mutations in the variable, antigen-binding coding sequences (known as complementarity-determining regions (CDR)) of the immunoglobulin genes. The mutation rate is up to 1,000,000 times higher than in cell lines outside the lymphoid system. Although the exact mechanism of the SHM is still not known, a major role for the activation-induced (cytidine) deaminase has been discussed. The increased mutation rate results in 1-2 mutations per CDR and, hence, per cell generation. The mutations alter the binding specificity and binding affinities of the resultant antibodies.[2][3]
  2. Clonal selection: B cells that have undergone SHM must compete for limiting growth resources, including the availability of antigen and paracrine signals from TFH cells. The follicular dendritic cells (FDCs) of the germinal centers present antigen to the B cells, and the B cell progeny with the highest affinities for antigen, having gained a competitive advantage, are favored for positive selection leading to their survival. Positive selection is based on steady cross-talk between TFH cells and their cognate antigen presenting GC B cell. Because a limited number of TFH cells reside in the germinal center, only highly competitive B cells stably conjugate with TFH cells and thus receive T cell-dependent survival signals. B cell progeny that have undergone SHM, but bind antigen with lower affinity will be out-competed, and be deleted. Over several rounds of selection, the resultant secreted antibodies produced will have effectively increased affinities for antigen.[3]

In vitro

Like the natural prototype, the in vitro affinity maturation is based on the principles of mutation and selection. The in vitro affinity maturation has successfully been used to optimize antibodies, antibody fragments or other peptide molecules like antibody mimetics. Random mutations inside the CDRs are introduced using radiation, chemical mutagens or error-prone PCR. In addition, the genetic diversity can be increased by chain shuffling. Two or three rounds of mutation and selection using display methods like phage display usually results in antibody fragments with affinities in the low nanomolar range.[3]

References

  1. ^ Victora, Gabriel D.; Nussenzweig, Michel C. (2012-04-23). "Germinal Centers". Annual Review of Immunology. 30 (1): 429–457. doi:10.1146/annurev-immunol-020711-075032. ISSN 0732-0582. PMID 22224772. S2CID 20168324.
  2. ^ Teng, G.; Papavasiliou, F.N. (2007). "Immunoglobulin Somatic Hypermutation". Annu. Rev. Genet. 41: 107–120. doi:10.1146/annurev.genet.41.110306.130340. PMID 17576170.
  3. ^ a b c Roskos L.; Klakamp S.; Liang M.; Arends R.; Green L. (2007). Stefan Dübel (ed.). Handbook of Therapeutic Antibodies. Weinheim: Wiley-VCH. pp. 145–169. ISBN 978-3-527-31453-9.
This page was last edited on 10 March 2023, at 13:55
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.