To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

The Aerobee rocket was one of the United States of America's most produced and productive sounding rockets. Developed by the Aerojet Corporation, the Aerobee was designed to combine the altitude and carrying capability of the V-2 with the cost effectiveness and mass production of the WAC Corporal. More than 1000 Aerojets were launched between 1947 and 1985, returning vast amounts of astronomical, physical, aeronomical, and biomedical data.

Development

Research utilizing V-2 rockets after World War II produced valuable results concerning the nature of cosmic rays, the solar spectrum, and the distribution of atmospheric ozone. However, the limited supply and the expense of assembling and firing the V-2 rockets, as well as the small payload capacity of the first purpose-built sounding rocket, the WAC Corporal, created demand for a low cost sounding rocket to be utilized for scientific research. An Applied Physics Laboratory (APL) effort led by James Van Allen led to a contract presented 17 May 1946 by the Naval Research Laboratory (NRL) to Aerojet, at the time a producer of WAC Corporal rockets, for the procurement of 20 liquid-fueled sounding rockets capable of carrying a 150 pounds (68 kg) payload to an altitude of 300,000 feet (91,000 m). 15 of the new rockets would be allocated to APL, and 5 to NRL. Aerojet was to be the prime contractor while Douglas Aircraft, also a producer of WAC Corporals, would provide aerodynamic engineering and take on some of the production.[1]

The Aerojet designation for new rocket was "Aerobee", a contraction of Aerojet, manufacturer of the engine, and Bumblebee, a Navy guided missile program.[2]:57[3] It was a single-stage, liquid-fueled, spin-stabilized rocket, using a solid-propellant rocket motor as a booster. This booster was jettisoned after 2.5 seconds of operation. The nose cone containing the telemetry transmitter and the scientific payload was recoverable and returned to earth on a parachute.[4] As with its progenitor, the WAC Corporal, the Aerobee required a tall launch tower to provide the necessary stability until the relatively slowly accelerating rocket gained enough speed for its fins to be effective in controlling attitude.[4] Launch towers were adjustable in inclination and azimuth to compensate for wind.[2]:59

On 25 September 1947, a dummy Aerobee attached to a live engine was launched from White Sands Missile Range, New Mexico for flight testing. This was followed (after two more dummy tests in October[5]) by the first complete Aerobee launch on 24 November. The flight was terminated after 35 seconds when the rocket's tail began yawing back and forth.[1] This Aerobee was the first rocket fired by the US Navy at White Sands[2]:66 and the subject of the first comprehensive missile range safety program.[2]:59

The next Aerobee launch, on 5 March 1948, was a complete success, achieving an altitude of 73 miles (117 km) and breaching the 100 kilometres (62 mi) boundary of space (as defined by the World Air Sports Federation[6]).[1]

Operational History

Early launches

The original Aerobee design was designated RTV-N-8 by the Navy and XASR-1 by Aerojet and the Army. This rocket was powered by the XASR-1, a 11.5 kilonewtons (2,600 lbf)[4] version of the 21AL-2600 engine also used in the Nike Ajax.[7][2]:70

The XASR-1 engine was superseded by the XASR-2, which used helium for fuel tank pressurization instead of compressed air. First flying in late 1949, Aerobees using the new engine were designated RTV-N-10(a) by the Navy and RTV-A-1 by the Air Force. Variants on this design employed by the Air Force included the RTV-A-1a, which used an Aerojet AJ10-25 sustainer with 18 kilonewtons (4,000 lbf) of thrust, but with a shorter duration; the RTV-A-1c, identical but without a solid rocket booster; the RTV-A-1b, using the XASR-1 engine, but with chemical pressurization; and the RTV-A-1d, using the 18 kilonewtons (4,000 lbf) engine of the -1a, with chemical pressurization, and launched without booster.[4]

The Navy also evolved their XASR-2 Aerobees. The RTV-N-10b used a variant of the -10a's engine with a higher specific impulse; the RTV-N-10c was a production variant of the -10b. The USAF fielded a production version of the RTV-N-10b, which did not get an official designation.[4]

First Aerobee RTV-A-1 launch, 2 Dec 1949
First Aerobee RTV-A-1 launch, 2 Dec 1949

On 2 December 1949, the Air Force launched its first Aerobee from Holloman AFB Launch Complex A. Though the rocket flew to nearly 60 miles (97 km) in altitude and took the first color motion-pictures of the Earth from space, the payload was lost and not recovered until 13 July 1950, by which point the film (as well as x-ray emulsions that has also been carried aboard) were unsalvageable. This inauspicious beginning was followed by 32 more Aerobee flights, most of which were successful, including the first successful flight of a monkey, on 18 April 1951.[1]

By the early 1950s Aerobee was the sounding rocket of choice being flown by the Navy Research Laboratory, USAF, and Army Signal Corps. The cost of lofting a pound of scientific payload to altitude was significantly lower than that of any competitor.[8][9] In 1955, the USAF's RTV-A-1 rockets were redesignated X-8 (X-8a-d corresponding with the old RTV-A-1a-d series).[4]

Later versions

The first major derivative version, the Aerobee-Hi (first launched in 1955) featured an increase in length, fuel capacity and improved engineering design. There were two versions of the Aerobee-Hi. The Air Force Aerobee Hi, (MX-1960, XRM-84) and the slightly longer Navy Aerobee-Hi (RV-N-13, PWN-2A). Engine development continued with the AJ11-6, AJ11-18, AJ11-20, AJ11-21, and AGVL0113C/F/H/I of the Aerobee-Hi.[10]:265–265[4] The Aerobe-Hi was boosted by the 2.5 KS-18000 booster.[2]:75 The Navy Aerobee-Hi was considerably different from the Air Force Aerobee-Hi, using the fuel pressure regulator from the Nike Ajax, a delayed start function and a pressure sealed tail cone to allow better measurement of the external upper atmosphere.[2]:79–80

Following the creation of NASA, development of Aerobees became largely guided by NASA. Exceptions developed for the armed services included the Aerobee 170, aka Nike-Aerobee, which combined the Nike M5E1 booster with the Aerobee 150, and the Aerobee 300 which utilized a AIM-7 Sparrow missile motor in its second stage; the Aerobee 300 was also known as the Sparrowbee. There were versions of Aerobee-Hi such as the Aerobee 150 and 150A in which case the difference was in the number of fins, the 150 having three and the 150A four. The Aerobee 100 was essentially a shortened Aerobee 150 with an AJ11 engine. By far the largest of the Aerobee series was the Aerobee 350, composed of four clustered Aerobee 150s boosted by a Nike M5E1.[11][12] Though they bore the Aerobee appellation, the Aerobee 75 and proposed Aerobee 90 were not actually related to the others in that they were solid propellant rockets with the 75 having a HAWK motor, the 90 was a 75 with a Sparrow second stage.[13]

Over the decades of development Aerobees were flown with many related engines including the XASR-1 (21AL-2600), 45AL-2600, AJ10-24, AJ10-25, AJ10-27, AJ10-34, AJ11-6, and AJ60-92. Later versions of the AJ10 and AJ-11 engines produced 17.8 kilonewtons (4,000 lbf) of thrust.[2]:70 Boosters included surplus Nike M5E1 boosters and VKM-17 and VKM-20s as we'll as the original 2.5KS-18000.[14]

Launch towers for Aerobee rockets were built at the White Sands Missile Range and Holloman AFB in New Mexico; Wallops Flight Facility in Virginia; Eglin AFB in Florida; Churchill Rocket Research Range in Manitoba, Canada; and Woomera, South Australia. Aerobees were also launched from Centro de Lancamento da Barreira do Inferno (CLBI), Natal, Rio Grande N, Brazil; Kauai Test Facility, Barking Sands, Kauai; Nouadhibou, Dakhlet Nouadhibou, Mauritania; Vandenberg AFB, California; Walker's Cay, Bahamas; and aboard the research vessel USS Norton Sound.[14] Two Seabee missiles were launched from the sea off Point Mugu, California. The Seabee's (Sea launched Aerobees) were launched from a position floating in water as part of Robert Truax's Sea Dragon project for Aerojet.[15] The Aerobees launched from overseas locations such as the Bahamas utilized a modified launch tower that had originally been used on the USS Norton Sound. NASA further modified that tower into the Mobile Aerobee Launch Facility (MALF) which was first used in 1966 for launches from Natal, Brazil.[11]:56

A total of 1,037 Aerobees (including variants) were launched from all locations with a success rate in excess of 97%. More than half of these were Aerobee 150/150As.[5] The last Aerobee, a 150 MI, flew an Airglow payload at White Sands on January 17, 1985.[16]

Australian launches

An Agreement between the Government of Australia and the Government of the United States of America regarding the Launching of Three Aerobee Rockets was established in Canberra, March 1970.[17] A similar treaty was agreed to in 1973 for 7 launches,[18] and in 1977 for 6 launches[19] for various astronomical and solar experiments conducted by NASA Goddard Space Flight Center.

In 1974, The US DARPA through Air Force Cambridge Research Laboratory and Australia agreed to launch 3 rockets under project Hi Star South.[20]

A total of 20 Aerobee launches were made at Woomera Test Range:[21]

  • Series 150: 3 launches in May/June 1970
  • Series 170: 7 launches in November 1973 and 2 launches February 1977
  • Series 200: 3 launches in September 1974
  • Series 200A: 5 launches in February 1977

Scientific Results

The scientific research done with the Aerobee family included photography, biomedical research, biology, the study of energetic particles, ionospheric physics, meteorology, radio astronomy, solar physics, aeronomy, spectrometry, signals intelligence research, infrared studies, magnetometry, ultraviolet and X-ray astronomy, as well as many other fields such as aerodynamic research and missile technology development.[11]:82 Aerobees comprised a vital part of America's efforts in the International Geophysical Year, comprising more than half of the allocated IGY sounding rocket budget.[11]:31

The earliest space biomedical missions were launched via Aerobee: Three Air Force missions carrying mice and monkeys, launched 1951–52, determined that the brief (~15 minutes) exposure to acceleration, reduced gravity, and high altitude cosmic radiation did not have significant negative effects.[1]

An Aerobee 150 launched on June 19, 1962 (UTC) detected the first X-rays emitted from a source outside our solar system[22][23] (Scorpius X-1).[24]

Legacy

An artifact of the Aerobee programs, which remains in use today, is the large enclosed launch tower built for the Aerobee 350 at White Sands Launch Complex 36.[25]

In fiction

In Men into Space, a 1960 tie-in novel by Murray Leinster for the TV series of the same name, Ed McCauley makes the first manned suborbital spaceflight in the nose-cone of an Aerobee.[26]

Technical data

Name Operator Payload Capacity Maximum flight altitude Engine Liftoff Thrust Total Mass Core Diameter Total Length First Launch Last Launch Total Launches
Aerobee RTV-N-8 NRL 68 kg (150 lb) 118 km (73 mi) XASR-1 11.5 kN (2,600 lbf) 745 kg (1,642 lb) .38 m (1 ft 3 in) 7.9 m (26 ft) 25 Sep 1947 14 Feb 1950 19
Aerobee XASR-SC-1 Army Signal Corps 68 kg (150 lb) 117 km (73 mi) XASR-1 11.5 kN (2,600 lbf) 745 kg (1,642 lb) .38 m (1 ft 3 in) 7.9 m (26 ft) 9 Dec 1948 10 Aug 1956 21
Aerobee RTV-A-1 U.S. Air Force 68 kg (150 lb) 116 km (72 mi) XASR-1 11.5 kN (2,600 lbf) 745 kg (1,642 lb) .38 m (1 ft 3 in) 7.9 m (26 ft) 2 Dec 1949 12 Dec 1952 28
Aerobee RTV-N-10 NRL 68 kg (150 lb) 143 km (89 mi) XASR-1 11.5 kN (2,600 lbf) 700 kg (1,500 lb) .38 m (1 ft 3 in) 7.9 m (26 ft) 15 Jan 1950 17 Sep 1957 27
Aerobee XASR-SC-2 Army Signal Corps 68 kg (150 lb) 124 km (77 mi) XASR-1 11.5 kN (2,600 lbf) 700 kg (1,500 lb) .38 m (1 ft 3 in) 7.9 m (26 ft) 26 Apr 1950 1 Sep 1953 13
Aerobee RTV-A-1b U.S. Air Force 68 kg (150 lb) 116 km (72 mi) XASR-1 11.5 kN (2,600 lbf) 745 kg (1,642 lb) .38 m (1 ft 3 in) 7.9 m (26 ft) 30 Aug 1951 30 Aug 1951 1
Aerobee RTV-A-1a U.S. Air Force 68 kg (150 lb) 130 km (81 mi) AJ10-25 17.8 kN (4,000 lbf) 770 kg (1,700 lb) .38 m (1 ft 3 in) 7.8 m (26 ft) 17 Oct 1951 12 Nov 1956 31
Aerobee RTV-A-1c U.S. Air Force 68 kg (150 lb) 0 km (0 mi) AJ10-25 17.8 kN (4,000 lbf) 510 kg (1,120 lb) .38 m (1 ft 3 in) 7.8 m (26 ft) 19 Feb 1952 19 Feb 1952 1
Aerobee RTV-N-10b NRL 68 kg (150 lb) 158 km (98 mi) AJ10-24 17.8 kN (4,000 lbf) 770 kg (1,700 lb) .38 m (1 ft 3 in) 7.8 m (26 ft) 5 Oct 1954 5 Oct 1954 1
Aerobee RTV-N-10c NRL 68 kg (150 lb) 185 km (115 mi) AJ10-34 17.8 kN (4,000 lbf) 770 kg (1,700 lb) .38 m (1 ft 3 in) 7.8 m (26 ft) 21 Feb 1955 29 Mar 1957 1
Aerobee Hi All 68 kg (150 lb) 240 km (150 mi) (Navy variant)
270 km (170 mi) (USAF variant)
45AL-2600 11.7 kN (2,600 lbf) 930 kg (2,050 lb) .38 m (1 ft 3 in) 9.5 m (31 ft) 21 Apr 1955 19 Apr 1960 44
Aerobee AJ10-27 U.S. Air Force 68 kg (150 lb) 203 km (126 mi) AJ10-27 17.8 kN (4,000 lbf) 770 kg (1,700 lb) .38 m (1 ft 3 in) 7.8 m (26 ft) 16 Jun 1955 13 Dec 1955 4
Aerobee RTV-N-10a NRL 68 kg (150 lb) 142 km (88 mi) AJ10-25 17.8 kN (4,000 lbf) 770 kg (1,700 lb) .38 m (1 ft 3 in) 7.8 m (26 ft) 13 Jul 1955 13 Dec 1955 2
Aerobee AJ10-34 U.S. Air Force 68 kg (150 lb) 146 km (91 mi) AJ10-34 17.8 kN (4,000 lbf) 770 kg (1,700 lb) .38 m (1 ft 3 in) 7.8 m (26 ft) 8 May 1956 13 Feb 1960 15
Aerobee AJ10-25 U.S. Air Force 68 kg (150 lb) 61 km (38 mi) AJ10-25 17.8 kN (4,000 lbf) 770 kg (1,700 lb) .38 m (1 ft 3 in) 7.8 m (26 ft) 9 Apr 1957 9 Apr 1957 1
Aerobee 100 USAF/NRL/NASA 68 kg (150 lb) 110 km (68 mi) Aerobee 100 17.8 kN (4,000 lbf) 770 kg (1,700 lb) .38 m (1 ft 3 in) 7.8 m (26 ft) 18 Feb 1958 20 Nov 1962 18
Aerobee 75 USAF/Army 68 kg (150 lb) 60 km (37 mi) Aerobee 75-1 7 kN (1,600 lbf) 400 kg (880 lb) .35 m (1 ft 2 in) 6 m (20 ft) 23 May 1958 22 Nov 1958 4
Aerobee 300 (Sparrowbee) USAF/UoM 45 kg (99 lb) 418 km (260 mi) Aerobee 150-2 18 kN (4,000 lbf) 983 kg (2,167 lb) .38 m (1 ft 3 in) 9.90 m (32.5 ft) 22 Oct 1958 20 Mar 1965 21
Aerobee 150 USAF/NASA/NRL 68 kg (150 lb) 325 km (202 mi) AJ11-21 18 kN (4,000 lbf) 930 kg (2,050 lb) 0.38 m (1 ft 3 in) 9.30 m (30.5 ft) 5 Feb 1959 22 Sep 1983 453
Aerobee 150A NASA 68 kg (150 lb) 370 km (230 mi) AJ11-21 18 kN (4,000 lbf) 900 kg (2,000 lb) 0.38 m (1 ft 3 in) 9.30 m (30.5 ft) 25 Mar 1960 23 May 1973 68
Aerobee 300A NASA 45 kg (99 lb) 415 km (258 mi) Aerobee 150-2 18 kN (4,000 lbf) 983 kg (2,167 lb) .38 m (1 ft 3 in) 9.90 m (32.5 ft) 3 Aug 1960 29 Jan 1964 21
Aerobee 350 NASA 227 kg (500 lb) 374 km (232 mi) Aerobee 150 x4 217 kN (49,000 lbf) 3,839 kg (8,464 lb) 0.56 m (1 ft 10 in) 15.90 m (52.2 ft) 11 Dec 1964 9 May 1984 20
Aerobee 150 MI NASA 68 kg (150 lb) 370 km (230 mi) AJ11-21 18 kN (4,000 lbf) 900 kg (2,000 lb) 0.38 m (1 ft 3 in) 9.30 m (30.5 ft) 13 Sep 1968 17 Jan 1985 20
Aerobee 170 NASA/NRL/USAF 68 kg (150 lb) 270 km (170 mi) Nike + AJ11-21 225 kN (51,000 lbf) 1,270 kg (2,800 lb) 0.42 m (1 ft 5 in) 12.60 m (41.3 ft) 16 Sep 1968 19 Apr 1983 111
Aerobee 150 MII NASA 68 kg (150 lb) 168 km (104 mi) AJ11-21 18 kN (4,000 lbf) 900 kg (2,000 lb) 0.38 m (1 ft 3 in) 9.30 m (30.5 ft) 2 Jul 1970 2 Jul 1970 1
Aerobee 170B NASA 68 kg (150 lb) 191 km (119 mi) Nike + AJ11-21 225 kN (51,000 lbf) 1,270 kg (2,800 lb) 0.42 m (1 ft 5 in) 12.60 m (41.3 ft) 9 Jul 1971 9 Jul 1971 1
Aerobee 170A NASA 68 kg (150 lb) 214 km (133 mi) Nike + AJ11-21 217 kN (49,000 lbf) 1,270 kg (2,800 lb) 0.42 m (1 ft 5 in) 12.40 m (40.7 ft) 10 Aug 1971 16 Nov 1978 26
Aerobee 200A NASA 68 kg (150 lb) 297 km (185 mi) Nike + AJ60-92 225 kN (51,000 lbf) 1,600 kg (3,500 lb) 0.42 m (1 ft 5 in) 12.60 m (41.3 ft) 20 Nov 1972 4 Feb 1978 51
Aerobee 200 USAF 68 kg (150 lb) 248 km (154 mi) Nike + AJ60-92 225 kN (51,000 lbf) 1,600 kg (3,500 lb) 0.42 m (1 ft 5 in) 12.60 m (41.3 ft) 4 Sep 1974 11 May 1976 4
Aerobee 150 MIII NASA 68 kg (150 lb) 172 km (107 mi) AJ11-21 18 kN (4,000 lbf) 900 kg (2,000 lb) 0.38 m (1 ft 3 in) 9.30 m (30.5 ft) 10 Mar 1973 10 Mar 1973 1

[4][5]

References

  1. ^ a b c d e Mattson, Wayne O.; Tagg, Martyn D. (June 1995). We Develop Missiles not Air! (PDF). Holloman Air Force Base, New Mexico: Legacy Resource Management Program, Air Combat Command USAF. pp. 45–52.
  2. ^ a b c d e f g h Newell, Homer E. Jr. (1959). Sounding Rockets. New York: McGraw-Hill.
  3. ^ Kennedy, Gregory P (2009). The Rockets and Missiles of White Sands Proving Ground 1945-1958. Atglen, PA: Schiffer Military History. p. 107. ISBN 978-0-7643-3251-7.
  4. ^ a b c d e f g h Parsch, Andreas (2003). "PWN-2". Directory of U.S. Military Rockets and Missiles. designation-systems.net. Retrieved 2020-02-08.
  5. ^ a b c Wade, Mark. "Aerobee". Retrieved 7 February 2021.
  6. ^ Voosen, Paul (July 24, 2018). "Outer space may have just gotten a bit closer". Science. doi:10.1126/science.aau8822. Retrieved April 1, 2019.
  7. ^ Sutton, George (2006). History of Liquid Propellent Rocket Engines. Reston Virginia: American Institute of Aeronautics and Astronautics. ISBN 1-56347-649-5.
  8. ^ DeVorkin, David H. (1992–1993). Science With A Vengeance. New York, Berlin, Heidelberg: Smithsonian Institution/Springer-Verlag. pp. 171, 174. ISBN 0-387-94137-1.CS1 maint: date format (link)
  9. ^ Miller, Jay (1988). The X-Planes X-1 to X-31. Arlington, Texas: Aerofax. p. 82. ISBN 0-517-56749-0.
  10. ^ Towndsen, John W.; Slavin, Robert M. (1957). Aerobe-Hi Development Program. American Rocket Society (AIAA).
  11. ^ a b c d Corliss, William R. (1972). NASA Sounding Rockets, 1958-1968, NASA SP-4401 (PDF). Scientific and Technical Information Office NASA, Washington D.C.:79
  12. ^ "Aerobee". space.skyrocket.de. Retrieved 2019-02-06.
  13. ^ Gunter's Space Page, https://space.skyrocket.de/doc_lau/aerobee-75.htm
  14. ^ a b Krebs, Gunter (2020). "Aerobee". Gunter's Space Page. Gunter Krebs. Retrieved 2020-02-06.
  15. ^ "Seabee". Astronautix.com. Retrieved 2020-02-02.
  16. ^ "Aerobee". space.skyrocket.de. Retrieved 2020-02-06.
  17. ^ "Exchange of Notes constituting an Agreement between the Government of Australia and the Government of the United States of America regarding the Launching of Three Aerobee Rockets [1970] ATS 7". Australasian Legal Information Institute (AustLII). 1970-05-22. Retrieved 2019-02-05.
  18. ^ "Exchange of Notes constituting an Agreement between the Government of Australia and the Government of the United States of America concerning the Launching of Seven Aerobee Rockets [1973] ATS 25". Australasian Legal Information Institute. 1973-09-18. Retrieved 2019-02-05.
  19. ^ "Agreement between Australia and Papua New Guinea regarding the Status of Forces of each State in the Territory of the other State, and Agreed Minute [1977] ATS 6". Australasian Legal Information Institute (AustLII). 1977-01-26. Retrieved 2019-02-05.
  20. ^ "Exchange of Notes constituting an Agreement between the Government of Australia and the Government of the United States of America concerning a Cooperative Scientific Program designated Hi Star South (1974) ATS 19". www3.austlii.edu.au. Australasian Legal Information Institute. Retrieved 19 April 2017.
  21. ^ "Woomera LA8". Astronautix.com. Retrieved 2019-02-05.
  22. ^ Riccardo Giacconi; Herbert Gursky; Frank R. Paolini; Bruno B. Rossi (1 December 1962). "EVIDENCE FOR X RAYS FROM SOURCES OUTSIDE THE SOLAR SYSTEM". Physical Review Letters. Vol. 9 no. 11. doi:10.1103/PhysRevLett.9.439. Retrieved 7 February 2021.
  23. ^ Significant Achievements in Space Astronomy 1958–1964 (PDF). NASA. 1966. OCLC 988751617. This article incorporates text from this source, which is in the public domain.
  24. ^ Giacconi R (2003). "Nobel Lecture: The dawn of x-ray astronomy". Rev Mod Phys. 75 (3): 995. Bibcode:2003RvMP...75..995G. doi:10.1103/RevModPhys.75.995.
  25. ^ Eckles, Jim (2013). Pocket Full Of Rockets. Las Cruces, New Mexico: FiddlebikePartnership. p. 419. ISBN 978-1-4927-7350-4.
  26. ^ Leinster, Murray (1960). Men into Space. New York: Berkley Publishing.
This page was last edited on 2 May 2021, at 08:46
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.