To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Adjacent-vertex-distinguishing-total coloring

From Wikipedia, the free encyclopedia

A proper AVD-total-coloring of the complete graph K4 with 5 colors, the minimum number possible.

In graph theory, a total coloring is a coloring on the vertices and edges of a graph such that:

(1). no adjacent vertices have the same color;

(2). no adjacent edges have the same color; and

(3). no edge and its endvertices are assigned the same color.

In 2005, Zhang et al.[1] added a restriction to the definition of total coloring and proposed a new type of coloring defined as follows.

Let G = (V,E) be a simple graph endowed with a total coloring φ, and let u be a vertex of G. The set of colors that occurs in the vertex u is defined as C(u) = {φ(u)} ∪ {φ(uv) | uvE(G)}. Two vertices u,vV(G) are distinguishable if their color-sets are distinct, i.e., C(u) ≠ C(v).

In graph theory, a total coloring is an adjacent-vertex-distinguishing-total-coloring (AVD-total-coloring) if it has the following additional property:

(4). for every two adjacent vertices u,v of a graph G, their colors-sets are distinct from each other, i.e., C(u) ≠ C(v).

The adjacent-vertex-distinguishing-total-chromatic number χat(G) of a graph G is the fewest colors needed in an AVD-total-coloring of G.

The following lower bound for the AVD-total chromatic number can be obtained from the definition of AVD-total-coloring: If a simple graph G has two adjacent vertices of maximum degree, then χat(G) ≥ Δ(G) + 2.[2] Otherwise, if a simple graph G does not have two adjacent vertices of maximum degree, then χat(G) ≥ Δ(G) + 1.

In 2005, Zhang et al. determined the AVD-total-chromatic number for some classes of graphs, and based in their results they conjectured the following.

AVD-Total-Coloring Conjecture. (Zhang et al.[3])

χat(G) ≤ Δ(G) + 3.

The AVD-Total-Coloring Conjecture is known to hold for some classes of graphs, such as complete graphs,[4] graphs with Δ=3,[5][6] and all bipartite graphs.[7]

In 2012, Huang et al.[8] showed that χat(G) ≤ 2Δ(G) for any simple graph G with maximum degree Δ(G) > 2. In 2014, Papaioannou and Raftopoulou[9] described an algorithmic procedure that gives a 7-AVD-total-colouring for any 4-regular graph.

YouTube Encyclopedic

  • 1/3
    Views:
    458
    26 622
    735
  • Equitable Colorings
  • Identifying Flat Surfaces in 3-D Shapes
  • Symmetry in Graphs and Digraphs - Raffaele Scapellato

Transcription

Notes

  1. ^ Zhang 2005.
  2. ^ Zhang 2005, p. 290.
  3. ^ Zhang 2005, p. 299.
  4. ^ Hulgan 2009, p. 2.
  5. ^ Hulgan 2009, p. 2.
  6. ^ Chen 2008.
  7. ^ Zhang 2005.
  8. ^ Huang2012
  9. ^ Papaioannou2014

References

  • Zhang, Zhong-fu; Chen, Xiang-en; Li, Jingwen; Yao, Bing; Lu, Xinzhong; Wang, Jianfang (2005). "On adjacent-vertex-distinguishing total coloring of graphs". Science China Mathematics. 48 (3): 289–299. Bibcode:2005ScChA..48..289Z. doi:10.1360/03ys0207. S2CID 6107913.
  • Hulgan, Jonathan (2009). "Concise proofs for adjacent vertex-distinguishing total colorings". Discrete Mathematics. 309 (8): 2548–2550. doi:10.1016/j.disc.2008.06.002.
  • Chen, Xiang'en (2008). "On the adjacent vertex distinguishing total coloring numbers of graphs with Delta=3". Discrete Mathematics. 308 (17): 4003–4007. doi:10.1016/j.disc.2007.07.091.
  • Huang, D.; Wang, W.; Yan, C. (2012). "A note on the adjacent vertex distinguishing total chromatic number of graphs". Discrete Mathematics. 312 (24): 3544–3546. doi:10.1016/j.disc.2012.08.006.
  • Chen, Meirun; Guo, Xiaofeng (2009). "Adjacent vertex-distinguishing edge and total chromatic numbers of hypercubes". Information Processing Letters. 109 (12): 599–602. doi:10.1016/j.ipl.2009.02.006.
  • Wang, Yiqiao; Wang, Weifan (2010). "Adjacent vertex distinguishing total colorings of outerplanar graphs". Journal of Combinatorial Optimization. 19 (2): 123–133. doi:10.1007/s10878-008-9165-x. S2CID 30532745.
  • P. de Mello, Célia; Pedrotti, Vagner (2010). "Adjacent-vertex-distinguishing total coloring of indifference graphs". Matematica Contemporanea. 39: 101–110.
  • Wang, Weifan; Huang, Danjun (2012). "The adjacent vertex distinguishing total coloring of planar graphs". Journal of Combinatorial Optimization. 27 (2): 379. doi:10.1007/s10878-012-9527-2. S2CID 254642281.
  • Chen, Xiang-en; Zhang, Zhong-fu (2008). "AVDTC numbers of generalized Halin graphs with maximum degree at least 6". Acta Mathematicae Applicatae Sinica. 24 (1): 55–58. doi:10.1007/s10878-012-9527-2. S2CID 254642281.
  • Huang, Danjun; Wang, Weifan; Yan, Chengchao (2012). "A note on the adjacent vertex distinguishing total chromatic number of graphs". Discrete Mathematics. 312 (24): 3544–3546. doi:10.1016/j.disc.2012.08.006.
  • Papaioannou, A.; Raftopoulou, C. (2014). "On the AVDTC of 4-regular graphs". Discrete Mathematics. 330: 20–40. doi:10.1016/j.disc.2014.03.019.
  • Luiz, Atílio G.; Campos, C.N.; de Mello, C.P. (2015). "AVD-total-colouring of complete equipartite graphs". Discrete Applied Mathematics. 184: 189–195. doi:10.1016/j.dam.2014.11.006.
This page was last edited on 1 February 2024, at 07:19
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.